Hayunoe nznarensctBo «lIpodeccrnoHanbHblil BECTHUK»

UDC 004.652

OPTIMIZING STORAGE OF UNSTRUCTURED DATA USING NO-SQL
DATABASES

Tulegenova Zh.
bachelor’s degree, Kazakh-American University (Almaty, Kazakhstan)

OIITUMUBAINA XPAHEHUA HECTPYKTYPUPOBAHHBIX TAHHBIX C
HOMOIIBIO NO-SQL BA3

Tyaerenosa 7K.C.
oakanasp, Kazaxcko-Amepuxanckuil yHugepcumem
(Armamel, Kazaxcman)

Abstract

The article discusses the main approaches to storing unstructured data using NoSQL databases,
including document-oriented databases (e.g., MongoDB) and key-value stores (e.g., Redis).
Examples of practical applications of both technologies are provided, along with code snippets and
explanations. The advantages of MongoDB, such as data structure flexibility and horizontal scaling,
are highlighted, as well as the benefits of Redis, including high-speed access due to in-memory data
storage and support for various data structures. Key differences between these databases and their
suitability for different use cases are analyzed. The article emphasizes the importance of choosing the
right database according to system requirements. Future research prospects involve integrating
NoSQL solutions and creating hybrid architectures to enhance data storage and processing efficiency.

Keywords: NoSQL databases, MongoDB, Redis, data storage, data optimization.

AHHOTAIUSA

B craTthe paccMaTpuBarOTCS OCHOBHBIE ITOJIXO/IbI K XPAHEHUIO HECTPYKTYPHUPOBAHHBIX TaHHBIX
¢ ucronszoBaHueM NoSQL 6a3 naHHBIX, BKIIOYas TOKYMEHTO-OPHEHTHPOBAHHBIE 0a3bl JaHHBIX
(manmpumep, MongoDB) u 6a3bl JaHHBIX THIA «KIIOY-3HAYeHHE» (Hampumep, Redis). Onucanbl
MpUMEphI PUMEHEHUST 00€UX TEXHOJIOTHI C IPUBEICHUEM KoJla U 00BICHEHUEM OCOOCHHOCTEH UX
ucnonb3oBanus. Ilokasansl npeumymiectBa MongoDB, Bkiodas ruOKOCTh CTPYKTYPHI JaHHBIX U
TOpPU30HTAIFHOE MAacITA0OMpPOBaHUE, a TaKkKe MpenuMyIiecTBa Redis, Takue kKak BbICOKasi CKOPOCTh
nocTyna Ojaronaps XpaHeHHIO JAaHHBIX B ONEPATUBHON MaMSTH U TOAJIEP’KKA PA3ITUYHBIX CTPYKTYD
naHHbIX. OOCYXIAIOTCS KIIOUEBBIE PA3UUUs MEXIY 3TUMHU 0a3aMu JaHHBIX U UX MPUMEHHUMOCTb
IUISL Pa3NUYHBIX crieHapueB. CTaThs aKIIEHTHPYET BHUMaHKUE Ha BHIOOPE MOIXOASAIICH 0a3bl JaHHBIX
B 3aBUCHUMOCTH OT MOTpeOHOCTEH cucTeMbl. [lepcrnekTHBBI JadbHEUIINX UCCIIEJOBAHUIN CBSI3aHbI C
uHTerpanueir NoSQL pemenuit u co3maHueM THOPUIHBIX apXUTEKTYp JJs TOBBIIICHUS
3G HEKTUBHOCTH XpaHEHHUS U 00paOOTKHU TaHHBIX.

KuaroueBbie caoBa: NoSQL 6a3er nmanueix, MongoDB, Redis, xpaHenue maHHBIX,
ONTUMM3ALINS JaHHBIX.

Introduction

The modern increase in data volumes generated by various sources, including the Internet of
Things (IoT), social networks, and industrial systems, calls for the development of effective solutions
for data storage and management. Unlike traditional relational databases, which work well with
structured data, processing and storing unstructured data require specialized technologies. One
approach that enables efficient management of such data is the use of NoSQL databases, which offer
flexibility and scalability when handling various formats and large data volumes. The aim of this

Kypnan «HpOopMaimoHHBIE TEXHOJIOTUHU 1 Oe30macHOCTh Ne3/2024 25

Hayunoe nznarensctBo «lIpodeccrnoHanbHblil BECTHUK»

article is to explore optimal approaches for storing unstructured data using NoSQL technologies and
to determine how they can contribute to improving the performance and reliability of systems.

NoSQL databases encompass a diverse range of technologies, including document-oriented,
graph-based, and wide-column databases. These systems provide flexible data management and
adaptation to changing business requirements. One of their key features is horizontal scaling, which
makes them particularly useful for processing large volumes of data generated by modern applications
and services.

Current research and practical use of NoSQL solutions demonstrate their ability to address
challenges in handling unstructured data, such as text files, multimedia elements, and other formats.
This article examines the main architectural approaches for optimizing data storage using NoSQL
technologies, including their advantages and limitations compared to relational systems.

Main part

One popular approach to storing unstructured data is the use of document-oriented databases
such as MongoDB. These databases store data in JSON-like documents, which allows for flexible
data management [1]. The example below demonstrates the creation of a collection and the addition
of a document to a database using Python.

from pymongo import MongoClient

Connect to the local MongoDB database
client = MongoClient('mongodb://localhost:27017/")

Create a database
db = client['example database']

Create a collection
collection = db['example collection']

Add a document to the collection
document = {

"user_id": 1,
"name": "Ivan Ivanov",
"age": 29,

nn nn

"preferences": ["movies", "music", "sports"]

}

Insert the document
collection.insert_one(document)

print("Document successfully added to the collection.")

In this code, the pymongo module is used to interact with the MongoDB database. The code
includes connecting to the database, creating a new collection, and adding a document with
unstructured information. The advantage of this approach is the ability to dynamically change the
data structure without compromising system integrity, which is especially useful when dealing with
diverse information [2].

The use of document-oriented databases allows for optimized storage by supporting
hierarchical and semi-structured data. This approach facilitates the management of data with diverse
structures and allows systems to adapt to changing business requirements without needing to modify
the entire database [3].

Another example of an effective approach to storing unstructured data is the use of key-value
databases like Redis. This database is known for its high performance and ease of use, making it
suitable for storing frequently requested data or data requiring quick access. The example below
demonstrates how to work with Redis using Python.

Kypnan «HpOopMaimoHHBIE TEXHOJIOTUHU 1 Oe30macHOCTh Ne3/2024 26

Hayunoe nznarensctBo «lIpodeccrnoHanbHblil BECTHUK»
import redis

Connect to the local Redis server
client = redis.StrictRedis(host="localhost', port=6379, db=0)

Add data to Redis
client.set('user:1', '

Hsportsﬂ]}l)

"

"name": "Ivan Ivanov", "age": 29, "preferences": ["movies", "music",

Retrieve data from Redis
data = client.get('user:1")

Decode the data

print("Retrieved data:", data.decode('utf-8'))

In this code, a connection is established with a local Redis server, and data is stored in JSON
string format. The set method is used for data entry, where the key is user:1, and the value is a JSON
string. The get method retrieves the data, which is then decoded for display.

Redis is ideal for caching, session management, and temporary data storage that requires quick
access. Unlike document-oriented databases, Redis does not offer complex data structures but
compensates for this with high operation speed and support for various structures like lists and sets
[4].

Advantages and disadvantages of MongoDB

One of the main advantages of MongoDB is the flexibility of its data structure. This database
allows for storing data in JSON-like documents, enabling the storage of unstructured information
without a strict predefined schema. This approach simplifies data integration and management,
especially when the structure requirements frequently change. Another key advantage of MongoDB
is its support for horizontal scaling. The system enables sharding, which distributes data across
multiple servers, allowing for efficient processing of large data volumes. MongoDB's high read and
write performance, aided by indexing and optimization mechanisms, positively impacts data access
speed [5].

However, MongoDB has its drawbacks. The absence of a strict data schema can lead to data
inconsistencies, particularly in systems with highly complex relationships. This can complicate data
management and analysis. Additionally, despite high performance with scaling, MongoDB may
require significant resources to maintain performance when handling very large data volumes and
complex queries. Effective use of MongoDB capabilities requires specific knowledge and skills for
configuration and administration, which may involve additional time and training [6].

Comparison of MongoDB and Redis

MongoDB and Redis are two popular NoSQL databases, each with its strengths and
weaknesses, making them suitable for different use cases. MongoDB is a document-oriented database
that supports storing data in JSON-like documents. The main advantage of MongoDB is its flexible
data structure, which allows unstructured information to be stored and managed without a strict
schema [7]. This makes MongoDB an excellent choice for applications where data changes frequently
or has a complex hierarchical structure. It also supports horizontal scaling and ensures high
performance for read and write operations with the use of indexes.

Redis, on the other hand, is a key-value database known for its extremely high performance due
to storing data in memory. This makes Redis ideal for tasks requiring ultra-fast data access, such as
caching, session management, message queues, and temporary data. It supports various data
structures, including strings, lists, sets, and hashes, which expand its data storage capabilities.
However, Redis is less convenient for working with complex hierarchical information compared to
MongoDB [8].

The main difference between MongoDB and Redis lies in their approaches to data storage.
MongoDB handles larger data volumes better, where data must be persistently stored on disk, while

Kypnan «HpOopMaimoHHBIE TEXHOJIOTUHU 1 Oe30macHOCTh Ne3/2024 27

Hayunoe nznarensctBo «lIpodeccrnoHanbHblil BECTHUK»

Redis, due to its in-memory architecture, is faster and more efficient in processing operations but
requires additional mechanisms for long-term data storage. Additionally, MongoDB can process more
complex queries thanks to its built-in indexing and advanced querying capabilities, whereas Redis is
best suited for simple operations with instant response.

Redis has several advantages over MongoDB, particularly when it comes to tasks involving
high performance and fast data access. First, the primary advantage of Redis is that it stores data in
memory, which ensures extremely fast data access compared to systems using disk storage, including
MongoDB [9]. This makes Redis an ideal choice for scenarios where minimal latency is crucial, such
as data caching, session management, and message queue processing.

Another significant advantage of Redis is its support for various data types, including strings,
lists, sets, and hashes, which allows for efficient handling of different use cases with minimal latency.
Due to its architecture, Redis also supports atomic operations, making it suitable for applications
where data integrity must be guaranteed during complex operations.

Redis is also known for its simplicity in installation and use. It has an intuitive command-line
interface and relatively simple architecture, which facilitates deployment and management.
Additionally, Redis can be used as a cache with an automatic data expiration feature (TTL), enabling
convenient management of temporary data and ensuring memory is freed as needed [10, 11].

Thus, if the main priority is fast data access and support for simple data structures, Redis offers
significant advantages over MongoDB. It is better suited for tasks that require immediate response
and where data may not need long-term storage, while MongoDB is more applicable for long-term
storage and managing complex data structures.

Conclusion

Optimizing unstructured data storage using NoSQL databases provides new opportunities for
enhancing system performance and flexibility. The examples of MongoDB and Redis illustrate how
choosing the right database depends on the tasks and data processing speed requirements. MongoDB
is suitable for storing data with a changing structure and processing large volumes of information
requiring long-term storage. In contrast, Redis, due to its in-memory data storage, ensures instant
access, making it ideal for caching and temporary data storage.

The main differences between these systems lie in their data processing approaches: MongoDB
offers storage and management of complex hierarchical information, while Redis focuses on high-
speed operations and support for simple data structures. This allows system developers and architects
to choose the most appropriate solutions based on the specific needs of their applications.

Future research in this field may focus on integrating various NoSQL databases to create hybrid
solutions that combine the strengths of different systems. This will enable even greater efficiency and
better system adaptation to growing data volumes and processing requirements.

References
1. Ilyin I.V,, Ilyashenko V.M. Development of IT architecture in medical organizations based on
the introduction of big data technologies // Technological Perspective within the Eurasian Space: New
Markets and Points of Economic Growth. 2018. P. 376-382.
2. Kuznetsov S.D., Poskonin A.V. Distributed horizontally scalable solutions for data
management // Proceedings of the Institute for System Programming of the RAS. 2013. Vol. 24. P.
327-358.
3. Klemenkov P.A., Kuznetsov S.D. Big data: modern approaches to storage and processing //
Proceedings of the Institute for System Programming of the RAS. 2012. Vol. 23. P. 143-158.
4. Burlov V.G., Gryzunov V.V., Sipovich D.E. Adaptive availability management in a geo-
information system using fog computing // International Journal of Open Information Technologies.
2021. Vol. 9. No.9. P. 74-87.
5. Seghier N.B., Kazar O. Performance benchmarking and comparison of NoSQL databases:
Redis vs MongoDB vs Cassandra using YCSB tool // 2021 International Conference on Recent
Advances in Mathematics and Informatics (ICRAMI). IEEE, 2021. P. 1-6.

Kypnan «HpOopMaimoHHBIE TEXHOJIOTUHU 1 Oe30macHOCTh Ne3/2024 28

Hayunoe nznarensctBo «lIpodeccrnoHanbHblil BECTHUK»

6. Matallah H., Belalem G., Bouamrane K. Evaluation of NoSQL databases: MongoDB,
Cassandra, HBase, Redis, Couchbase, OrientDB // International Journal of Software Science and
Computational Intelligence (IJSSCI). 2020. Vol. 12. No.4. P. 71-91.

7. Punia Y., Aggarwal R. Implementing information system using MongoDB and Redis //
International Journal of Advanced Trends in Computer Science and Engineering. 2014. Vol. 3. No.2.
P. 16-20.

8. Abu Kausar M., Nasar M., Soosaimanickam A. A study of performance and comparison of
NoSQL databases: MongoDB, Cassandra, and Redis using YCSB // Indian Journal of Science and
Technology. 2022. Vol. 15. No.31. P. 1532-1540.

9. Sanchez R.A.G., Bernal D.J.M., Parada H.D.J. Security assessment of NoSQL MongoDB,
Redis, and Cassandra database managers // 2021 Congreso Internacional de Innovacion y Tendencias
en Ingenieria (CONIITI). IEEE, 2021. P. 1-7.

10. SenP.S., Mukherjee N. An ontology-based approach to designing a NoSQL database for semi-
structured and unstructured health data // Cluster Computing. 2024. Vol. 27. No.1. P. 959-976.

11. Shantharajah S.P., Maruthavani E. A survey on challenges in transforming No-SQL data to
SQL data and storing in cloud storage based on user requirement // International Journal of
Performability Engineering. 2021. Vol. 17. No.8. P. 703.

Kypnan «HpOopMaimoHHBIE TEXHOJIOTUHU 1 Oe30macHOCTh Ne3/2024 29

