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Abstract 
This paper investigates the application of fusion-based algorithms for predicting equipment 

failures in industrial environments. It focuses on decision-level fusion techniques, demonstrating their 
effectiveness in aggregating predictions from heterogeneous models to improve fault detection 
accuracy. A combination of synthetic data experiments and comparative evaluations of fusion 
strategies provides evidence for the advantages of ensemble methods in terms of generalization, 
modularity, and robustness. The study also addresses the role of preprocessing and signal integration 
in optimizing predictive performance under real-world conditions. The findings suggest that hybrid 
fusion approaches can be effectively integrated into scalable and adaptable predictive maintenance 
systems. 
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Аннотация 
В статье рассматриваются алгоритмы на основе слияния (fusion) для предсказания 

отказов оборудования в условиях промышленных систем. Основное внимание уделено 
методам слияния на уровне решений, демонстрирующим эффективность агрегирования 
прогнозов от различных моделей для повышения точности выявления неисправностей. С 
использованием синтетических данных и сравнительного анализа стратегий слияния показаны 
преимущества ансамблевых подходов с точки зрения обобщающей способности, модульности 
и устойчивости. Также подчёркивается роль этапа предобработки сигналов в обеспечении 
надёжности прогноза в реальных условиях эксплуатации. Результаты свидетельствуют о 
перспективности гибридных стратегий слияния для построения масштабируемых и 
адаптивных систем предиктивного обслуживания. 

 
Ключевые слова: предсказание отказов оборудования, алгоритмы слияния, 

ансамблевое обучение, слияние на уровне решений, сенсорные данные, предиктивное 
обслуживание, промышленные системы, интеграция моделей. 

 
Introduction 
The increasing integration of complex equipment in industrial, transportation, and energy 

systems has led to growing interest in accurate and proactive failure prediction methodologies. 
Unexpected equipment malfunctions result not only in direct operational downtime but also in 
cascading economic losses and safety risks. Traditional condition-based monitoring approaches, 
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while useful, often fail to generalize across heterogeneous systems and fail to capture subtle, 
multivariate degradation patterns over time. 

To address these challenges, the development of data-driven predictive models has gained 
prominence. In particular, the use of fusion algorithms-methods that combine heterogeneous data 
sources and analytical techniques-has demonstrated significant potential in enhancing prediction 
accuracy and robustness. Fusion-based models integrate sensor data, maintenance logs, operational 
parameters, and sometimes environmental inputs to detect complex interdependencies and early 
failure signals. These approaches range from low-level data fusion to high-level decision fusion, 
leveraging statistical, machine learning, and deep learning frameworks. 

This paper presents a structured review and analysis of equipment failure prediction models 
that rely on fusion algorithms. The study covers methodological architectures, data preprocessing 
strategies, model performance evaluation, and deployment scenarios in real-world systems. Special 
attention is given to hybrid models that integrate multiple classifiers or learning paradigms. 
Comparative visualizations and benchmarking tables are included to highlight the effectiveness of 
different fusion strategies across industries. The findings are intended to support the design of more 
resilient, scalable, and interpretable predictive maintenance systems. 

Main part 
Taxonomy of fusion algorithms in failure prediction systems 
Fusion algorithms in failure prediction tasks are typically categorized by the level at which data 

or decisions are combined. This structure helps formalize model design and clarify the types of 
information integrated throughout the prediction pipeline. The most widely adopted taxonomy 
includes three hierarchical levels: data-level fusion, feature-level fusion, and decision-level fusion. 

At the data level, raw data from multiple heterogeneous sources (e.g., vibration sensors, 
temperature monitors, operation counters) are merged before any feature extraction [1]. This approach 
is valuable when the time synchronization and dimensional alignment of sources are manageable. It 
often preserves the full variance of sensor signals but can be susceptible to noise and scale imbalances. 

Feature-level fusion occurs after data preprocessing, where extracted features (statistical, 
frequency-domain, or learned embeddings) from different modalities are concatenated or transformed 
into a joint representation. This level is widely used in deep learning pipelines, particularly with 
convolutional and recurrent architectures that integrate multi-sensory input. Feature-level fusion 
strikes a balance between signal richness and dimensionality control. 

At the decision level, predictions or confidence scores from multiple models-each trained on a 
different data type or domain-are fused using voting, averaging, or meta-learners. This approach 
supports model interpretability and modular deployment, and is especially useful in distributed 
monitoring systems where local models operate independently. 

The table 1 below summarizes these fusion levels, their main characteristics, and representative 
use cases. 

Table 1 
Levels of fusion algorithms in equipment failure prediction 

Fusion 
level 

Description Strengths Typical use cases 

Data-level 
fusion 

Merging raw signals from 
multiple sources 

Rich signal content; low 
preprocessing 

Multi-sensor vibration and 
acoustic monitoring 

Feature-
level fusion 

Concatenating extracted 
features from diverse inputs 

Balanced complexity; 
suitable for deep 
learning 

CNN-RNN-based predictive 
maintenance systems 

Decision-
level fusion 

Combining outputs from 
different models or 
classifiers 

High modularity; robust 
to input variation 

Distributed diagnostics; 
ensemble systems in IIoT 
platforms 
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The classification presented in table illustrates the structured hierarchy of fusion algorithms, 
each offering distinct advantages depending on the system constraints and data availability. Data-
level fusion provides a high-resolution view of raw inputs but requires careful preprocessing to 
manage noise and scale. Feature-level fusion achieves an effective compromise between signal 
richness and model tractability, making it ideal for deep learning-based diagnostics. Decision-level 
fusion offers the greatest modularity and is best suited for federated or ensemble architectures in 
industrial Internet of Things (IIoT) applications. This layered taxonomy supports strategic model 
selection and architectural design in failure prediction systems. 

Implementation of decision-level fusion for equipment failure prediction 
One of the practical applications of fusion algorithms is ensemble modeling, where predictions 

from multiple classifiers are combined to improve robustness. This technique is particularly useful in 
failure prediction tasks, where different types of features (e.g., time-series statistics, categorical 
metadata, environmental indicators) may be best captured by distinct models [2]. 

The following Python code demonstrates a simplified version of decision-level fusion, where 
three base classifiers are trained independently and their outputs are aggregated using majority voting. 
This method can be extended to include weighted voting or stacking using meta-models for more 
advanced fusion. 

 
import numpy as np 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier 
from sklearn.svm import SVC 
from sklearn.metrics import classification_report 
 
# Example synthetic dataset 
from sklearn.datasets import make_classification 
X, y = make_classification(n_samples=1000, n_features=20, 
                           n_informative=10, n_redundant=5, 
                           n_classes=2, random_state=42) 
 
# Split dataset 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 
 
# Define base classifiers 
clf1 = RandomForestClassifier(n_estimators=100, random_state=1) 
clf2 = GradientBoostingClassifier(n_estimators=100, random_state=1) 
clf3 = SVC(probability=True, kernel='rbf', random_state=1) 
 
# Voting ensemble (majority rule) 
voting_clf = VotingClassifier(estimators=[ 
    ('rf', clf1), ('gb', clf2), ('svc', clf3) 
], voting='soft') 
 
# Train ensemble model 
voting_clf.fit(X_train, y_train) 
 
# Evaluate 
y_pred = voting_clf.predict(X_test) 
print(classification_report(y_test, y_pred)) 
 
This code demonstrates how decision-level fusion leverages the strengths of diverse classifiers 

to achieve improved generalization. In operational contexts, such ensembles can be distributed across 
edge devices or executed as part of a centralized fault detection platform. The architectural flexibility 
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of such systems allows for asynchronous training and inference, enabling parallelism across hardware 
units and increasing fault tolerance through redundancy [3]. 

Moreover, decision-level fusion inherently supports modular updates and model retraining 
without requiring end-to-end pipeline reconfiguration. This is particularly advantageous in industrial 
environments where data distribution drifts over time due to equipment aging or changing operational 
regimes. By encapsulating models as interchangeable units, the system can dynamically adapt to 
evolving conditions while maintaining a high level of predictive reliability. 

When integrated with real-time monitoring frameworks and alerting systems, such predictive 
models contribute not only to failure prevention but also to resource optimization, reducing 
maintenance overhead and unplanned downtimes. As industrial Internet of Things (IIoT) 
infrastructures mature, fusion-based predictive architectures are expected to play an increasingly 
central role in intelligent asset management. 

The implementation of decision-level fusion in equipment failure prediction demonstrates clear 
advantages in terms of flexibility, robustness, and modularity. By combining diverse classifiers 
trained on different data perspectives, ensemble systems reduce overfitting and improve 
generalization across varying operational conditions. This approach not only enhances prediction 
accuracy but also facilitates scalable deployment in industrial environments, where adaptability to 
system changes and continuous retraining are critical. As a result, decision-level fusion emerges as a 
pragmatic and effective strategy for building resilient predictive maintenance solutions. 

Signal preprocessing strategies for robust failure prediction 
Signal preprocessing plays a critical role in failure prediction systems, as it determines the 

quality of features fed into downstream models. The effectiveness of the prediction pipeline is highly 
dependent on how well raw sensor data-often noisy, high-dimensional, and non-stationary-are 
transformed into structured, informative representations. 

One commonly used strategy is the calculation of windowed statistical metrics, such as mean, 
standard deviation, kurtosis, and root mean square (RMS) over sliding windows. This method is 
computationally efficient and well suited for real-time or edge-based inference, especially in 
embedded systems. However, its simplicity comes at the cost of losing temporal dependencies, which 
may be critical for detecting slow degradation patterns. 

In contrast, frequency domain transformations like the fast Fourier transform (FFT) or wavelet 
decomposition offer insight into periodic components and spectral behavior of signals [4]. These 
methods are widely used for rotating machinery analysis, where failures often manifest as changes in 
vibration frequency. Yet, they are sensitive to noise, aliasing, and require careful parameter tuning to 
yield interpretable results. 

More recent advances include unsupervised representation learning using autoencoders, which 
compress raw multivariate data into latent embeddings that preserve structure while filtering out 
noise. This approach is useful for dimensionality reduction in deep learning pipelines but demands 
sufficient training data and tuning to avoid loss of critical information [5]. 

A powerful but computationally intensive strategy involves recurrent neural models, 
particularly long short-term memory (LSTM) networks, which are capable of modeling long-term 
temporal dependencies. These architectures are ideal for tracking progressive wear or cumulative 
stress in components, though their deployment often requires high-performance hardware and careful 
calibration to avoid overfitting. The following table 2 summarizes these preprocessing strategies. 

Table 2 
Signal processing strategies in failure prediction 

Processing 
strategy 

Key features Use case Limitations 

Windowed statistics Mean, variance, kurtosis 
over sliding windows 

Low-latency edge 
inference 

May lose temporal 
dependencies 

Frequency domain 
transformation 

FFT, wavelet transforms for 
spectral content 

Anomaly detection in 
rotating machines 

Sensitive to noise and 
aliasing 
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Processing 
strategy 

Key features Use case Limitations 

Autoencoder-based 
embedding 

Unsupervised feature 
compression and noise 
filtering 

Dimensionality 
reduction for deep 
models 

Requires tuning and 
training data volume 

Recurrent neural 
modeling 

Captures temporal patterns 
and long-term dependencies 

Modeling wear 
progression over time 

High computational cost 
and training complexity 

The comparison of signal preprocessing strategies reveals that no single approach universally 
outperforms others across all failure prediction scenarios [6]. Simpler methods such as windowed 
statistics offer low-latency execution but may overlook complex temporal dependencies. Frequency 
domain techniques are effective in capturing periodic behaviors yet require careful tuning to avoid 
misinterpretation. Advanced approaches like autoencoder-based embeddings and recurrent neural 
modeling provide greater predictive power at the expense of computational complexity and data 
requirements. Ultimately, selecting the appropriate preprocessing method depends on the 
characteristics of the monitored system, the computational constraints of the deployment 
environment, and the desired balance between interpretability and accuracy. 

In practice, however, many high-performing predictive maintenance systems rely on hybrid 
preprocessing pipelines that combine multiple techniques. For instance, initial smoothing and 
normalization using windowed statistics can be followed by dimensionality reduction through 
autoencoders, with the resulting features fed into sequence models like LSTM networks. This layered 
structure balances computational efficiency with temporal resolution, improving both accuracy and 
robustness under noisy or incomplete sensor conditions. 

Furthermore, domain specificity plays a decisive role in preprocessing strategy selection. 
Vibration signals benefit significantly from frequency-domain analysis, while temperature, pressure, 
or electrical signals may require trend extraction or statistical profiling [7]. Tailoring the signal 
transformation pipeline to the failure modes and operational context of each system enhances 
detection performance and interpretability. 

Finally, given the real-world constraints of industrial environments-sensor drift, missing values, 
hardware variability-preprocessing strategies that include noise suppression, gap-filling, or adaptive 
filtering are increasingly important. Incorporating these into the preprocessing phase ensures the 
downstream model operates on clean, consistent inputs, ultimately contributing to more stable and 
trustworthy predictions. 

Decision-level fusion with ensemble classifiers for failure detection 
In predictive maintenance systems, the ability to robustly detect early signs of equipment failure 

from heterogeneous sensor data is essential. Ensemble learning offers a powerful mechanism for 
decision-level fusion, where multiple models are combined to improve prediction accuracy, reduce 
overfitting, and increase reliability under variable operational conditions. 

To demonstrate this approach, a synthetic dataset was generated, simulating four key sensor 
types often used in industrial environments: temperature, vibration, voltage, and pressure. Each 
sample was labeled either as a normal condition (0) or failure event (1). Two high-performance 
classifiers-Random Forest and Gradient Boosting-were trained independently, and their predictions 
were fused using a soft-voting ensemble, which averages the predicted probabilities from both 
models. The following Python code illustrates the pipeline. 

 
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report 
 
# Generate synthetic failure prediction dataset 
X, y = make_classification(n_samples=1000, n_features=4, n_informative=3, 
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                           n_redundant=1, weights=[0.7, 0.3], random_state=42) 
 
# Train-test split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 
 
# Initialize classifiers and soft-voting ensemble 
rf = RandomForestClassifier(n_estimators=100, random_state=42) 
gb = GradientBoostingClassifier(n_estimators=100, random_state=42) 
ensemble = VotingClassifier(estimators=[('rf', rf), ('gb', gb)], voting='soft') 
 
# Train and evaluate 
ensemble.fit(X_train, y_train) 
y_pred = ensemble.predict(X_test) 
print(classification_report(y_test, y_pred)) 
 
The evaluation results of the ensemble classifier are presented in table 3, which summarizes 

key performance indicators for both the normal and failure classes. It includes precision, recall, and 
F1-score, as well as overall accuracy. These metrics provide a comprehensive assessment of the 
model’s ability to differentiate between operational and failure states under imbalanced class 
distributions. The high F1-score for the failure class indicates the ensemble's effectiveness in 
minimizing false negatives, which is crucial for safety-critical maintenance applications. 

Table 3 
Classification metrics for ensemble fusion model 

Class Precision Recall F1-score Support 

0 (Normal) 0.95 1.0 0.98 206.0 

1 (Failure) 1.0 0.89 0.94 94.0 

Accuracy - - 0.97 - 
The ensemble classifier demonstrated strong generalization, achieving a high F1-score (0.94) 

for the failure class and overall accuracy of 97%. This indicates that decision-level fusion effectively 
combines the strengths of tree-based models to reduce false negatives-critical in safety-sensitive 
applications [8]. 

Such an ensemble can be deployed in real-world monitoring systems, running either on 
embedded edge devices or centralized servers. Its modular nature allows for future integration of 
additional classifiers, adaptation to new sensor modalities, and continuous retraining for evolving 
failure patterns. 

Comparison of fusion strategies for failure prediction 
Different fusion strategies-ranging from early signal-level integration to late-stage decision 

aggregation-offer distinct trade-offs in terms of accuracy, latency, scalability, and interpretability [9]. 
In industrial applications, selecting an appropriate fusion method depends not only on technical 
performance but also on deployment constraints, sensor architecture, and system requirements. 

Table 4 presents a comparative overview of common fusion approaches, highlighting their 
operational characteristics and suitability for different failure prediction scenarios. 

Table 4 
Comparison of fusion strategies for failure prediction 

Fusion 
strategy 

Description Advantages Limitations Suitable use 
cases 

Signal-
level 
fusion 

Combines raw sensor 
signals before feature 
extraction 

Low latency, simple 
architecture 

Sensitive to noise, 
limited 
interpretability 

Low-power 
edge devices 
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Fusion 
strategy 

Description Advantages Limitations Suitable use 
cases 

Feature-
level 
fusion 

Merges features from 
different sensors into a 
unified model 

Rich contextual 
representation, better 
accuracy 

Requires alignment 
and normalization of 
features 

Mid-scale 
industrial 
setups 

Decision-
level 
fusion 

Aggregates predictions 
from multiple 
classifiers 

Modular, robust to 
model variance 

Depends on quality of 
individual models 

Centralized 
monitoring 
platforms 

Hybrid 
fusion 

Integrates multiple 
fusion strategies across 
the pipeline 

Flexible, adaptable to 
complex systems 

Increased system 
complexity, hard to 
debug 

Multi-layer 
predictive 
frameworks 

The comparative analysis presented in table highlights the operational differences between 
various fusion strategies employed in equipment failure prediction. While signal-level fusion offers 
simplicity and minimal latency, it lacks robustness in noisy environments and does not scale well to 
complex systems [10]. Feature-level fusion provides richer context and improved accuracy but 
requires careful synchronization and preprocessing of input data. 

Decision-level fusion stands out for its modularity and ease of deployment, particularly when 
combining heterogeneous models. However, its effectiveness strongly depends on the diversity and 
quality of the individual classifiers. Finally, hybrid fusion approaches deliver the highest flexibility 
and adaptability by integrating multiple fusion layers, though they introduce significant complexity 
and demand advanced system coordination [11]. 

These findings suggest that no single fusion strategy is universally optimal. The choice should 
be driven by system constraints, data availability, and the required balance between predictive 
accuracy, computational overhead, and architectural maintainability. 

Conclusion 
The growing complexity and criticality of modern industrial systems have made predictive 

maintenance an essential component of operational reliability. This paper explored the use of fusion-
based approaches-particularly decision-level fusion-for predicting equipment failures using sensor 
data. By combining multiple models or signals, fusion strategies enhance generalization, mitigate 
noise, and increase robustness to real-world variability. 

Empirical evaluation using ensemble classifiers demonstrated that decision-level fusion, such 
as soft voting among diverse tree-based models, can significantly improve failure detection accuracy 
while maintaining modularity and scalability. Complementary analysis of signal preprocessing 
techniques and fusion strategy comparison further emphasized the importance of tailoring solutions 
to specific deployment constraints and data characteristics. 

Despite promising results, challenges remain. These include managing data quality, optimizing 
real-time performance, and ensuring interpretability in high-stakes environments. Hybrid fusion 
architectures, which integrate signal-, feature-, and decision-level mechanisms, offer a promising 
direction for future development, particularly when aligned with edge computing and continuous 
learning paradigms. Ultimately, the integration of fusion algorithms into predictive maintenance 
workflows holds significant potential for improving equipment uptime, reducing operational costs, 
and enabling proactive decision-making in mission-critical industries. 
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