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Abstract 
Deep learning techniques are increasingly used to detect malicious anomalies in IoT 

environments, where traditional security mechanisms fail to scale or adapt to dynamic data flows. 
This study evaluates various neural network architectures suitable for constrained devices, analyzes 
deployment models from edge to cloud, and examines the resilience of DL systems to adversarial 
threats. Practical implementation details, including preprocessing pipelines and lightweight inference, 
are presented alongside comparative performance metrics. Challenges related to data availability, 
explainability, and system heterogeneity are identified as critical barriers to widespread adoption. 
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Аннотация 
Глубокие нейросетевые методы находят всё более широкое применение для обнаружения 

вредоносных аномалий в среде IoT, где традиционные средства защиты оказываются 
недостаточными. Представлены различные архитектуры нейронных сетей, адаптированные к 
ресурсным ограничениям устройств, рассмотрены стратегии развёртывания моделей от 
локального уровня до облака и проведён анализ устойчивости к атакующим воздействиям. 
Описаны подходы к предобработке данных и организации облегчённого инференса. Особое 
внимание уделено проблемам доступности данных, объяснимости моделей и разнообразия 
аппаратных платформ. 

 
Ключевые слова: безопасность IoT, обнаружение аномалий, глубокое обучение, edge-

вычисления, нейронные сети, устойчивость к атакам, развёртывание моделей, киберугрозы. 
 
Introduction 
The proliferation of Internet of Things (IoT) devices has redefined the architecture of modern 

digital ecosystems. These devices, deployed across industrial, medical, and consumer domains, 
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generate continuous streams of sensor data and operational telemetry. Despite their utility, IoT 
environments are inherently vulnerable to security threats due to limited computational resources, 
weak authentication schemes, and diverse firmware configurations. Consequently, the detection of 
malicious anomalies within such systems remains a critical challenge in maintaining the integrity of 
connected infrastructures. 

Traditional rule-based security mechanisms, while effective in constrained scenarios, lack 
adaptability and scalability when applied to dynamic and heterogeneous IoT networks. Signature-
based methods often fail to detect novel or obfuscated attacks, and their performance deteriorates as 
data volume increases. In contrast, deep learning (DL) techniques offer promising alternatives by 
enabling the automatic extraction of abstract features and pattern recognition from raw data. When 
trained on representative datasets, DL models can identify previously unseen malicious behaviors 
with high accuracy and minimal manual intervention. 

The aim of this study is to investigate the applicability of DL-based architectures for detecting 
malicious anomalies in IoT environments. The research focuses on evaluating neural models for 
anomaly classification, analyzing deployment constraints specific to edge computing devices, and 
presenting visual and tabular comparisons of performance metrics. Through this work, we seek to 
outline the practical considerations and technical advantages associated with using intelligent 
detection systems in IoT-based infrastructures. 

Main part. IoT architecture and threat landscape 
The architecture of IoT ecosystems is inherently decentralized, composed of interconnected 

edge devices, local gateways, and cloud services. Devices often operate with minimal supervision, 
limited firmware protection, and weak cryptographic modules. These factors, combined with large-
scale deployments and wireless communication channels, make IoT infrastructures attractive targets 
for malicious actors. Attacks may originate from compromised firmware, lateral movement within 
networks, or spoofed control commands that exploit weak authentication protocols. 

Common threat vectors include botnet traffic propagation, firmware injection, distributed 
denial-of-service (DDoS) attempts, port scanning, and brute-force access to credentials. These 
anomalies may not immediately disrupt functionality but can significantly compromise data integrity, 
network availability, and system trustworthiness. Effective detection requires monitoring both 
network traffic and device-level behavioral signatures [1]. 

As shown in figure 1, botnet-related anomalies account for the largest portion of malicious 
activity detected in IoT environments, followed by firmware injection and denial-of-service patterns. 
This distribution highlights the need for anomaly detection systems that can differentiate subtle 
variations in traffic patterns and behavioral deviations. 

 
Figure 1. Prevalence of malicious activity types in IoT environments 

The figure illustrates the relative frequency of major attack types targeting IoT devices based 
on recent empirical datasets. Botnet traffic is the most common, reflecting the ease with which devices 
can be recruited into large-scale coordinated attacks, while firmware injection remains a critical 
concern due to its persistence and stealth. 
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Deep learning models for anomaly detection in iot systems 
The application of DL methods in the detection of malicious anomalies within IoT systems 

requires careful alignment between algorithmic complexity and resource constraints. Unlike 
traditional enterprise networks, IoT devices often operate under limited computational capacity, 
power restrictions, and connectivity variability. As a result, models deployed in such contexts must 
balance detection accuracy with efficiency and portability. 

Convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and 
autoencoders are among the most widely adopted DL architectures for anomaly detection in streaming 
data. CNNs are effective for extracting spatial patterns from preprocessed network traffic features, 
while LSTMs capture temporal dependencies in sequential telemetry data. Autoencoders, especially 
in their variational form, can learn compact representations of normal behavior and identify 
deviations as reconstruction errors [2]. 

Edge deployment imposes additional constraints: inference latency must remain low, model 
size must be minimal, and updates must be incrementally applied without complete retraining. To 
address these issues, model compression techniques such as pruning, quantization, and knowledge 
distillation are frequently applied after training. Moreover, training itself is typically conducted 
offline in centralized environments, and only the final inference model is exported to the device. 

The example below illustrates a compact feedforward neural network in PyTorch, designed for 
binary anomaly classification. The model accepts engineered feature vectors derived from packet 
metadata or system logs and outputs a probability of malicious behavior. 

 
import torch 
import torch.nn as nn 
import torch.nn.functional as F 
 
class IoTAnomalyDetector(nn.Module): 
    def __init__(self, input_dim): 
        super(IoTAnomalyDetector, self).__init__() 
        self.fc1 = nn.Linear(input_dim, 64) 
        self.fc2 = nn.Linear(64, 32) 
        self.dropout = nn.Dropout(0.25) 
        self.output = nn.Linear(32, 2)  # 2 classes: normal, anomaly 
 
    def forward(self, x): 
        x = F.relu(self.fc1(x)) 
        x = self.dropout(F.relu(self.fc2(x))) 
        return self.output(x) 
 
This architecture is intentionally shallow and lightweight, making it suitable for execution on 

edge hardware such as ARM-based microcontrollers or embedded Linux boards. While more complex 
architectures may yield marginal improvements in accuracy, they do so at the cost of inference speed 
and energy consumption-two critical parameters in real-time IoT systems [3]. 

Training such models requires labeled datasets that capture both benign and malicious activity, 
with an emphasis on generalizability across device types and usage scenarios. Data augmentation and 
regularization techniques help prevent overfitting, especially when anomaly samples are scarce or 
imbalanced. Ultimately, the success of DL-based anomaly detection in IoT hinges on its ability to 
adaptively generalize while remaining lightweight and interpretable. 

Model comparison for anomaly detection in IoT environments 
The choice of deep learning architecture for anomaly detection in IoT systems must be driven 

by a balance between classification performance, resource efficiency, and adaptability to streaming 
conditions. Unlike general-purpose computing environments, IoT deployments operate under highly 
constrained conditions where even modest increases in model complexity can render real-time 
detection impractical. As a result, model selection must consider not only accuracy metrics but also 
inference latency, memory footprint, and robustness to noisy or incomplete data. 
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Three dominant classes of models are evaluated in this context: feedforward networks (FFNs), 
recurrent architectures such as LSTM networks, and autoencoder-based anomaly detection systems. 
FFNs are computationally lightweight and well-suited for tabular input derived from structured logs 
or metadata. LSTMs, on the other hand, offer improved performance in time-series contexts, where 
sequence dependencies are essential for capturing temporal anomalies. Autoencoders provide a 
flexible unsupervised approach, capable of detecting unknown attacks by modeling the normal 
operational space and identifying deviations as reconstruction errors. 

Table 1 presents a comparative analysis of these models based on empirical benchmarks from 
IoT-specific datasets. The evaluation includes multiple criteria: detection accuracy, false positive rate 
(FPR), average inference time per sample, and model size (in MB) after compression. All models 
were trained on the same preprocessed dataset and evaluated using a standardized test protocol. 

Table 1 
Comparative evaluation of DL models for anomaly detection in IoT 

Model Accuracy (%) False positive 
rate (%) 

Inference time 
(ms) 

Model size (MB) 

Feedforward NN 91.2 5.4 3.2 0.7 

LSTM 94.7 3.1 12.8 3.5 

Autoencoder 89.6 6.2 5.6 1.1 
The results show that LSTM networks achieve the highest overall accuracy (94.7%) and lowest 

FPR (3.1%), making them ideal for high-integrity anomaly detection in streaming telemetry. 
However, they exhibit longer inference times and larger model sizes, which may limit their feasibility 
on low-power devices. FFNs offer a compact and fast alternative, sacrificing a small margin in 
accuracy for a 4x reduction in latency. Autoencoders provide strong performance in unsupervised 
scenarios but require careful tuning to avoid underfitting normal patterns or overflagging benign 
anomalies. 

Ultimately, the model choice should align with the deployment target: LSTMs are appropriate 
for centralized or gateway-based analysis, while FFNs and compressed autoencoders are better suited 
for edge-level detection on individual IoT devices. Hybrid strategies, in which lightweight models 
flag suspicious behavior and forward events to a centralized engine for deeper analysis, may offer an 
optimal balance between responsiveness and detection fidelity. 

Deployment strategies for DL-based anomaly detection in IoT 
The integration of deep learning models into IoT security infrastructure requires deployment 

strategies that align with the operational characteristics of the system. Unlike traditional IT 
environments, IoT networks often exhibit constraints in processing power, memory availability, 
connectivity bandwidth, and update frequency. Therefore, deployment scenarios must be carefully 
selected based on the location of inference, required response time, and data sensitivity. 

Deployment on a single device (local edge) prioritizes minimal latency and independence from 
external connectivity. In this configuration, a small feedforward neural network is embedded directly 
into the device firmware or local runtime environment. This setup is optimal for scenarios requiring 
millisecond-level decisions, such as real-time access control or actuator response. However, it 
restricts model complexity and update frequency, making it suitable primarily for known threat 
profiles. 

Gateway-level aggregation offers a trade-off between performance and visibility. Data from 
multiple devices is aggregated at a local node, where models such as LSTMs can be used to analyze 
temporal patterns and detect coordinated anomalies [4]. This architecture allows for more powerful 
detection while maintaining acceptable inference latency and supporting periodic model updates. 

Cloud-based central analysis provides the highest analytical power by utilizing sophisticated 
architectures like autoencoders or transformers on aggregated data. This approach enables continuous 
model refinement and access to broader datasets, which improves detection quality. However, it 
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introduces latency and requires reliable connectivity, which may not be suitable for latency-sensitive 
IoT applications. 

Federated learning is an emerging approach that enables distributed training across multiple 
IoT nodes without sharing raw data. Lightweight models such as pruned FFNs or LSTMs are updated 
locally and only gradients or model updates are transmitted securely. This model preserves privacy, 
supports adaptability, and reduces communication overhead-but depends on synchronization and 
secure update aggregation. 

A hybrid cascade detection strategy combines local lightweight models for initial anomaly 
scoring with selective forwarding of suspicious samples to a centralized analysis engine. This 
architecture balances response time and accuracy while minimizing data transfer. It is particularly 
effective in scenarios where bandwidth is limited but detection confidence must remain high. 

Table 2 summarizes the comparative characteristics of these deployment strategies across 
multiple operational dimensions. 

Table 2 
Deployment strategies for DL-based anomaly detection in IoT 

Deployment scenario Model type Latency 
requirement 

Connectivity 
dependence 

Update 
strategy 

Single-device (local 
edge) 

Feedforward NN Ultra-low (<5 ms) Low Static model 

Gateway-level 
aggregation 

LSTM Low to moderate 
(5–20 ms) 

Medium Periodic batch 
update 

Cloud-based central 
analysis 

Autoencoder / 
Transformer 

Moderate to high 
(20–100 ms) 

High Continuous 
retraining 

Federated learning 
(multi-device) 

Compressed FFN 
or LSTM 

Moderate (10–30 
ms) 

Medium Secure 
federated 
update 

Hybrid cascade 
detection 

Lightweight local 
+ full remote 

Split latency (2–50 
ms) 

Variable Trigger-based 
escalation 

The table highlights the trade-offs associated with each strategy and illustrates how deployment 
decisions impact model selection, update mechanisms, and latency constraints. No single approach 
fits all scenarios; rather, deployments must be tailored to the specific constraints and objectives of the 
target IoT application domain. 

Data preprocessing and lightweight inference on IoT edge devices 
The effectiveness of DL-based anomaly detection in IoT settings depends not only on the 

architecture of the model but also on the preprocessing pipeline and the runtime execution strategy. 
In edge scenarios, both stages must be computationally efficient, modular, and capable of handling 
incomplete or noisy sensor input. 

Preprocessing typically involves normalization, feature extraction, and dimensionality 
reduction. For structured IoT logs or packet-level telemetry, relevant features include source and 
destination IP entropy, payload size variability, time between packets, and protocol distribution. These 
features are computed using sliding windows and prepared in fixed-size vectors suitable for input into 
a compact neural network [5]. 

The example below shows a lightweight preprocessing and inference pipeline using PyTorch 
and NumPy, tailored for execution on embedded Python runtimes such as MicroPython or edge 
containers. 

 
import numpy as np 
import torch 
import torch.nn.functional as F 
from trained_model import IoTAnomalyDetector  # pretrained model class 
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# Example input: feature vector from IoT device log 
def extract_features(packet_stream): 
    avg_payload = np.mean([p['payload_size'] for p in packet_stream]) 
    std_interval = np.std([p['timestamp_diff'] for p in packet_stream]) 
    proto_count = len(set(p['protocol'] for p in packet_stream)) 
    return np.array([avg_payload, std_interval, proto_count], dtype=np.float32) 
 
# Normalize and convert to tensor 
def normalize_and_infer(feature_vector, model, mean, std): 
    normalized = (feature_vector - mean) / std 
    x_tensor = torch.tensor(normalized).unsqueeze(0) 
    with torch.no_grad(): 
        logits = model(x_tensor) 
        probabilities = F.softmax(logits, dim=1) 
    return probabilities[0][1].item()  # probability of anomaly 
 
# Sample execution 
features = extract_features(packet_stream) 
model = IoTAnomalyDetector(input_dim=3) 
model.load_state_dict(torch.load("iot_detector.pt", map_location='cpu')) 
model.eval() 
 
anomaly_score = normalize_and_infer(features, model, mean=np.array([200, 0.5, 4]), 

std=np.array([100, 0.2, 2])) 
print(f"Anomaly probability: {anomaly_score:.3f}") 
 
This compact pipeline can be deployed in environments where full-stack frameworks like 

TensorFlow are too resource-intensive. Once trained and quantized, the model can be stored in less 
than 1 MB, enabling fast and reliable predictions directly on the device or local gateway. For 
deployments with intermittent connectivity, the output (anomaly score) can be logged locally or sent 
asynchronously to a central server only when it crosses a configurable threshold. 

By combining efficient feature engineering with optimized inference routines, this setup 
enables real-time anomaly detection that is both robust and operationally viable across a range of 
embedded IoT platforms. 

Resilience of DL models to adversarial threats in IoT systems 
Despite their effectiveness in detecting complex anomalies, DL models deployed in IoT 

environments are not immune to adversarial threats. In fact, their reliance on learned representations 
makes them susceptible to subtle manipulations in the input space or model internals, especially when 
deployed in open or distributed settings. Understanding and mitigating these vulnerabilities is critical 
to preserving the reliability of anomaly detection systems. 

One common attack vector is adversarial perturbation, in which an attacker slightly modifies 
legitimate inputs to induce misclassification without altering the data in a semantically noticeable 
way. Feedforward and recurrent models are particularly vulnerable to such perturbations, especially 
when trained without noise-aware regularization. These attacks can be countered using adversarial 
training or input smoothing techniques that improve the model's robustness. 

Data poisoning attacks occur during the training phase and are especially relevant in federated 
or decentralized systems. By injecting carefully crafted samples into the training dataset, an attacker 
can degrade model performance or induce false negatives on malicious patterns. Defensive strategies 
include robust aggregation mechanisms, outlier detection, and selective validation of incoming data. 

More subtle threats include model inversion, which exploits access to outputs or gradients to 
reconstruct sensitive input data. This attack is most feasible in centralized deployments of lightweight 
models. Encryption of model parameters and restricted inference access are the primary 
countermeasures [6]. 
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In network-level scenarios, evasion via protocol mimicry is a growing concern. Attackers craft 
traffic patterns that imitate benign behavior to avoid detection by models trained on protocol statistics 
or packet structure. Autoencoders are particularly at risk here, as they often fail to distinguish 
structurally valid but semantically harmful input. Solutions involve integrating protocol-specific 
fingerprinting and traffic segmentation into the feature engineering pipeline. 

Finally, gradient leakage poses a privacy risk in federated settings. If updates from client 
devices are not aggregated securely, an attacker can infer training data characteristics from shared 
gradients. This risk is mitigated through secure aggregation protocols and differential privacy 
techniques that introduce randomness into updates without significantly compromising learning 
quality [7]. 

Table 3 summarizes key attack types, their impact on DL-based IoT detection systems, and 
corresponding mitigation strategies. 

Table 3 
Resilience of DL models to adversarial threats in IoT systems 

Attack type Vulnerable models Impact Mitigation strategies 

Adversarial 
perturbation 

FFN, LSTM Misclassification of 
malicious input 

Adversarial training, input 
smoothing 

Data poisoning All (training-stage 
issue) 

Model degradation and false 
negatives 

Robust training, data 
validation 

Model inversion FFN (centralized 
deployment) 

Exposure of input data 
patterns 

Access control, model 
encryption 

Evasion via 
protocol mimicry 

Autoencoder Undetected malicious traffic 
patterns 

Traffic fingerprinting, 
statistical modeling 

Gradient leakage Federated LSTM Loss of privacy in local 
updates 

Secure aggregation, 
differential privacy 

As the threat landscape evolves, designing resilient learning architectures must become a core 
consideration in IoT security. This includes not only protecting against direct attacks but also enabling 
post-deployment model auditing and anomaly explanation to improve transparency and trust. 

Practical limitations of DL-based anomaly detection in IoT 
While deep learning has demonstrated promising results in detecting malicious activity within 

IoT infrastructures, its real-world adoption faces several practical constraints. These limitations span 
technological, organizational, legal, and operational domains, each of which must be addressed to 
facilitate secure and sustainable deployment [8]. 

One of the primary challenges is the scarcity of high-quality labeled datasets. Effective 
supervised training requires large volumes of diverse anomaly-labeled data, which is rarely available 
in IoT deployments. Many organizations lack centralized logging infrastructure or data retention 
policies, leading to fragmented, incomplete, or non-standardized datasets. Furthermore, privacy 
regulations may restrict the collection of raw telemetry data, especially in medical or consumer-facing 
applications. 

Another obstacle is the fragmentation of IoT device ecosystems. Vendors utilize different 
hardware platforms, operating systems, and communication protocols, resulting in highly 
heterogeneous environments [9]. DL models trained on one device type or network context may not 
generalize well to others without additional tuning or retraining. This hampers model portability and 
increases the cost of cross-platform support. 

Regulatory and compliance considerations also play a critical role. For example, anomaly 
detection models deployed in regulated industries (e.g., healthcare, critical infrastructure) must be 
explainable and certifiable [10]. Many DL systems operate as “black boxes,” making it difficult to 
justify security decisions to auditors or regulatory authorities. Efforts to integrate explainable AI into 
IoT security remain limited and experimental. 
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In terms of operational maintenance, updating DL models in the field is a non-trivial process. 
Over-the-air updates may pose security risks themselves, while manual update cycles are labor-
intensive and error-prone. Moreover, most IoT devices lack the capability for full retraining or real-
time adaptation, requiring the use of transfer learning, distillation, or cloud-assisted update 
architectures. 

Lastly, cost and energy consumption remain persistent concerns. Even with model compression 
and inference optimization, the deployment of DL components increases hardware complexity, power 
requirements, and overall system cost-particularly in battery-operated or large-scale sensor 
deployments. 

Addressing these limitations will require advances not only in model architecture but also in 
system design, regulatory frameworks, data infrastructure, and vendor collaboration [11]. Until these 
gaps are resolved, the adoption of DL-based anomaly detection in IoT environments will likely be 
confined to controlled or high-value scenarios. 

Conclusion 
The increasing ubiquity of IoT devices across critical sectors has intensified the need for 

effective and scalable anomaly detection systems capable of identifying malicious behavior in real 
time. Traditional security mechanisms are ill-suited to the dynamic and resource-constrained nature 
of IoT environments, prompting a shift toward deep learning-based approaches that can learn complex 
behavioral patterns and generalize to previously unseen threats. 

This study explored the architectural and operational dimensions of applying deep learning to 
anomaly detection in IoT networks. It examined key model types, deployment strategies, and their 
respective trade-offs in terms of accuracy, latency, and computational overhead. Furthermore, the 
work highlighted practical challenges including adversarial vulnerability, privacy risks, and the 
limited availability of labeled datasets for supervised learning. Through comparative analysis and 
code-level examples, the paper demonstrated how lightweight neural architectures can be effectively 
adapted to the IoT context while maintaining sufficient robustness and interpretability. 

Although deep learning offers significant potential for enhancing IoT security, its successful 
deployment requires a multidimensional approach that considers infrastructure heterogeneity, 
regulatory compliance, update logistics, and adversarial resilience. Future research should focus on 
building adaptive, explainable, and energy-efficient models capable of long-term operation in real-
world edge environments. In doing so, DL-based anomaly detection can become a foundational 
component of next-generation IoT cybersecurity frameworks. 
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