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Abstract 
This paper investigates the application of graph databases for user behavior analysis, 

highlighting their advantages over relational models in representing and querying complex interaction 
patterns. Key aspects explored include data modeling techniques, query strategies using Cypher, 
integration into analytics pipelines, graph algorithm use cases, and system performance comparisons. 
Visual analyses and empirical benchmarks demonstrate the efficiency of graph-native operations in 
behavioral contexts, particularly for multi-hop queries and influence modeling. The study also 
addresses operational challenges and outlines emerging trends such as graph machine learning and 
temporal graph modeling. The results support the adoption of graph databases as a core component 
of intelligent, relationship-aware analytical systems. 
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Аннотация 
В статье рассматривается применение графовых баз данных для анализа поведения 

пользователей и подчёркиваются их преимущества перед реляционными моделями при работе 
с многосвязными структурами взаимодействий. Проанализированы подходы к моделированию 
данных, реализация запросов на языке Cypher, интеграция в аналитические пайплайны, 
применение графовых алгоритмов и сравнительная оценка производительности систем. На 
основе визуализаций и эмпирических тестов показана эффективность графового подхода в 
поведенческих сценариях, особенно при работе с глубокой связностью и моделированием 
влияния. Также обсуждаются эксплуатационные ограничения и ключевые перспективы, 
включая графовое машинное обучение и временные графы. Полученные результаты 
подтверждают целесообразность внедрения графовых СУБД как основы для построения 
интеллектуальных и ориентированных на отношения аналитических платформ. 
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Introduction 
In recent years, the exponential growth of digital interaction data has driven the demand for 

more sophisticated tools to capture, represent, and analyze user behavior. Traditional relational 
databases, while effective for structured and tabular data, often struggle to model the complex, 
interconnected patterns inherent in user activity logs, social media footprints, and recommendation 
systems. This limitation has led to an increased interest in graph-based data representations, where 
entities and their relationships are treated as first-class citizens in the data model. 

Graph databases (GDBs), such as Neo4j, Amazon Neptune, and ArangoDB, offer native 
support for relationship-centric data structures, enabling efficient traversal and pattern matching. 
Unlike relational models that rely heavily on joins, GDBs provide direct edge-based connections 
between nodes, significantly reducing query latency when exploring behavioral paths or networked 
interactions. These features make them especially suitable for applications involving user 
segmentation, fraud detection, influence mapping, and personalization engines, where the semantics 
of relationships are as critical as the attributes of individual users. 

This paper aims to examine the practical application of graph databases in user behavior 
analysis, focusing on modeling techniques, query strategies, and performance trade-offs. The study 
compares graph-based and relational approaches using real-world datasets and demonstrates how 
graph algorithms-such as community detection, centrality metrics, and path analysis-can extract 
meaningful behavioral patterns. Through visual models, query examples, and benchmarking tables, 
the paper outlines best practices for designing graph-powered analytical workflows in dynamic digital 
environments. 

Main part. Modeling user behavior data in relational and graph databases 
Modeling user behavior requires not only capturing discrete user actions, but also representing 

the relationships and dependencies between those actions. In relational database systems, this 
typically involves multiple normalized tables and foreign key constraints, where joins are used to 
reconstruct interaction histories. However, as the complexity and density of relationships increase-
such as in social graphs, clickstreams, or recommendation engines-the performance and clarity of 
relational models degrade rapidly. 

Graph databases offer an alternative paradigm in which users, actions, sessions, and resources 
are represented as nodes, and the relationships between them (e.g., «clicked», «viewed», «follows», 
«purchased») are stored as edges. This structure allows for more intuitive modeling and enables 
recursive traversal operations with significantly lower computational cost. Queries that would require 
nested joins in SQL can often be expressed as short, expressive traversal patterns in graph query 
languages such as Cypher or Gremlin [1]. 

The following table 1 summarizes the key conceptual and operational differences between 
relational and graph-based approaches to user behavior modeling. 

Table 1 
Comparison of relational and graph database models for user behavior analysis 

Aspect Relational model Graph model 

Data structure Tables with rows and foreign keys Nodes and edges representing entities 
and relationships 

Relationship 
representation 

Indirect (via joins) Direct (via edges) 

Query complexity High for multi-hop relationships Low for recursive traversal 

Performance with 
deep links 

Degrades with number of joins Stable with graph traversal 
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Aspect Relational model Graph model 

Schema flexibility Rigid, predefined schemas Schema-optional, supports 
heterogeneous data 

Use cases Transactional systems, structured 
tabular data 

Behavioral analysis, recommendations, 
social networks 

This comparison illustrates that graph databases provide significant advantages in scenarios 
where relationship depth and query flexibility are critical. As user behavior increasingly manifests in 
multi-layered and temporal patterns, adopting graph-based models becomes essential for building 
accurate, real-time analytics pipelines. 

Graph query strategies for user behavior analysis 
Graph databases offer powerful querying mechanisms that go beyond traditional filtering and 

aggregation. User behavior analysis often requires tracing interactions across multiple degrees of 
separation-such as identifying chains of content consumption, influence paths in social networks, or 
anomalous navigation patterns. Graph query languages like Cypher (used in Neo4j) and Gremlin 
(used in TinkerPop-based systems) provide native support for recursive traversals, subgraph pattern 
matching, and graph algorithms-all of which are essential for behavioral insights. 

One of the most common techniques is path traversal, used to identify the sequence of actions 
taken by a user or to discover how different users are connected through shared interactions [2]. For 
example, detecting a community of users who consistently follow similar purchase paths or 
identifying influence chains in referral-based ecosystems. Graph databases can execute such queries 
in linear time relative to path depth, while in relational systems this often results in multiple nested 
joins and exponential growth in execution time. 

Another frequent approach is the use of centrality metrics (e.g., PageRank, betweenness, 
closeness) to identify the most influential users or sessions within a network. In behavioral contexts, 
high-centrality nodes may represent key navigational hubs, referral generators, or fraudulent actors. 
Similarly, community detection algorithms (e.g., Louvain, label propagation) help cluster users into 
behaviorally similar groups for segmentation or targeting. 

To highlight the performance advantage of graph databases for multi-hop queries, the figure 
below compares the average query response times in a synthetic dataset as the relationship depth 
increases from 1 to 6 hops. As shown in figure 1, while graph-based traversal scales linearly, relational 
joins exhibit exponential degradation. 

 
Figure 1. Query response time by depth of relationship traversal in graph vs. relational database models 

The results illustrated in Figure clearly demonstrate the scalability advantage of graph databases 
for multi-hop relationship queries. As the traversal depth increases, the response time in relational 
systems grows exponentially due to the compounding cost of join operations. In contrast, graph 
databases maintain near-linear performance, enabling efficient exploration of deeply connected user 
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behavior patterns. This characteristic makes graph-based models particularly suitable for real-time 
behavioral analytics, where low-latency insights across complex interaction chains are required. 

Graph algorithms for extracting behavioral patterns 
Graph databases support a wide range of algorithms that can reveal latent behavioral structures 

not easily accessible through traditional data analysis techniques. These algorithms enable analysts 
to uncover user clusters, detect anomalies, evaluate influence, and optimize recommendation 
strategies based on structural properties of the user interaction graph [3]. 

One widely used category is community detection algorithms, such as the Louvain method or 
label propagation. These help to identify groups of users who exhibit similar behavioral trajectories-
visiting similar sequences of pages, reacting to the same content, or purchasing related products. Such 
clustering is valuable for audience segmentation, personalization, and targeted marketing. 

Another critical class is centrality algorithms, including PageRank, degree centrality, 
betweenness, and closeness. These metrics quantify the importance of nodes within the network. In 
behavioral contexts, central nodes may correspond to super-users, content hubs, or actors involved in 
suspicious activity propagation. 

Similarity and proximity algorithms, such as Jaccard similarity or personalized PageRank, can 
identify users with shared interests or patterns, supporting collaborative filtering and social 
recommendations. For anomaly detection, graph outlier detection methods identify structurally rare 
patterns, such as unexpected edge density or users disconnected from typical interaction flows. 

The table 2 below outlines common categories of graph algorithms, their primary goals, and 
examples of behavioral analysis use cases. 

Table 2 
Graph algorithms for user behavior analysis 

Algorithm type Primary goal Example use cases 

Community detection Cluster users with similar 
behavior 

Segmenting audiences, recommending 
group-based content 

Centrality metrics Identify influential nodes Detecting super-users, fraud hubs, or 
key referrers 

Similarity/proximity Find structurally similar users Collaborative filtering, social 
recommendations 

Pathfinding/traversal Discover behavioral chains Navigation flow analysis, content 
funnel optimization 

Outlier detection Identify anomalous user 
patterns 

Fraud detection, bot activity 
identification 

As summarized in table, graph algorithms provide a versatile analytical toolkit for modeling 
and interpreting complex user behavior patterns. Each category of algorithms serves a distinct 
purpose-ranging from identifying communities and influential users to detecting anomalies and 
reconstructing behavioral paths. The ability to apply these algorithms directly within graph databases 
enables real-time, relationship-aware analytics that traditional systems often struggle to achieve. By 
selecting appropriate algorithms aligned with specific behavioral objectives, analysts can uncover 
hidden structures, personalize user experiences, and improve decision-making in dynamic digital 
environments. 

Implementing behavior analysis using Cypher queries 
Cypher, the declarative query language for Neo4j and other property graph databases, enables 

analysts to describe complex patterns of user behavior in a concise and expressive way. Rather than 
relying on cumbersome SQL joins, Cypher operates natively on node–relationship structures, making 
it particularly effective for analyzing sequences, cycles, and multi-hop interactions. 

In behavioral analytics, Cypher is often used to implement three major classes of queries: path-
based queries, structural ranking, and pattern discovery. Path-based queries are frequently employed 
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to trace navigation flows, user conversion funnels, or repeated access loops [4]. Structural ranking is 
useful for identifying high-impact users, such as referrers or hubs in content networks, while pattern 
discovery is used for detecting suspicious behavior, churn indicators, or anomalous interaction 
graphs. 

The flexibility of Cypher allows analysts to combine conditions on both node attributes (e.g., 
user age, session duration) and relationship properties (e.g., frequency, time intervals), enabling fine-
grained filtering of behavior. This makes it a powerful tool for segmenting user groups based on 
interaction types, recency, or cross-platform activity. 

To better understand the practical use of Cypher in behavior analysis, figure 2 presents the 
relative frequency of different query types across a sample of real-world graph-based analytics 
workloads. The data illustrates that path queries dominate most use cases, followed by 
influence/ranking queries, with anomaly detection and temporal pattern matching growing steadily 
in adoption. 

 
Figure 2. Distribution of Cypher query types in user behavior analysis use cases 

As shown in figure, path-based queries constitute the largest share of Cypher-based behavior 
analysis workloads, reflecting their central role in tracing user navigation, conversion paths, and 
repeated interaction sequences. Influence and ranking queries are also widely adopted, particularly in 
use cases involving social graphs, referral systems, and recommendation optimization. The growing 
use of anomaly detection and temporal pattern matching indicates a shift toward more predictive and 
adaptive analytical approaches. This distribution highlights the flexibility of Cypher in supporting 
both descriptive and advanced behavioral modeling tasks within graph databases. 

Integrating graph databases into behavior analytics architectures 
While GDBs provide a powerful foundation for modeling and analyzing complex user 

interactions, their effective use in production requires seamless integration into broader data 
processing and analytics pipelines. In contemporary data-driven environments, behavioral data is 
typically generated across multiple systems-web logs, mobile applications, customer relationship 
management (CRM) platforms-and must be aggregated, normalized, and enriched before meaningful 
analysis can be performed. Integrating GDBs into this landscape demands careful orchestration of 
data flows, performance tuning, and alignment with organizational data governance policies. 

One of the most common integration patterns involves extract–transform–load (ETL) pipelines 
that move behavioral event data from transactional sources into the graph store. Tools such as Apache 
NiFi, Kafka Connect, and Neo4j’s own Data Importer enable automated ingestion of session logs, 
interaction events, and user profiles. Preprocessing steps may include timestamp normalization, 
deduplication, and enrichment with metadata (e.g., device type, location, user segment). A consistent 
data model must be designed to accommodate both entity diversity and evolving relationship schemas 
[5]. 

Once ingested, graph databases often operate alongside other analytical systems. Hybrid 
architectures may combine GDBs for relationship modeling with columnar databases (e.g., 
ClickHouse, BigQuery) for high-speed aggregations or with document stores (e.g., MongoDB) for 



The scientific publishing house «Professional Bulletin» 

№ 2/2025 Journal «Professional Bulletin. Information Technology and Security» 61 

flexible session metadata storage. Business intelligence (BI) platforms can connect to GDBs via 
Cypher or GraphQL interfaces, while machine learning (ML) workflows increasingly incorporate 
graph embeddings and topological features derived from GDBs to improve model accuracy [6]. 

Despite these advantages, integration also poses challenges. Maintaining data consistency 
across systems, ensuring low-latency synchronization, and managing schema evolution in dynamic 
environments require ongoing architectural and operational effort. Additionally, access control, 
auditing, and compliance constraints must be enforced across all interconnected components, 
especially in industries like finance and healthcare. 

Nonetheless, when properly integrated, graph databases significantly enhance the depth and 
contextual quality of behavioral analytics, enabling systems that go beyond static segmentation 
toward truly relational, adaptive, and intelligent user modeling. 

Performance comparison of graph and relational databases in behavior analytics 
Selecting the appropriate database architecture for behavior analytics is not merely a matter of 

data modeling preferences-it directly impacts system scalability, query latency, and analytical 
flexibility [7]. To evaluate this, a series of benchmark tests were conducted using representative 
behavior analysis tasks, including multi-hop traversal, user influence detection, and session pattern 
extraction. Both relational and graph database platforms were tested on equivalent datasets with 
controlled dimensions. 

The results consistently indicate that graph databases outperform relational systems in queries 
involving deep relationship chains and structural computations. In contrast, relational databases 
maintain an advantage in flat aggregations and predefined tabular reporting. The performance gap 
widens with query complexity, especially as the number of joins in SQL increases beyond three or 
four hops. 

Figure 3 presents the execution time (in milliseconds) for five common behavior analysis tasks 
executed in both relational and graph-based implementations. These include tasks such as detecting 
returning user loops, calculating node centrality, and reconstructing behavioral paths. The data clearly 
demonstrate the scalability advantage of graph systems as relationship complexity grows. 

 
Figure 3. Execution time comparison of graph and relational databases on behavior analysis tasks 
As illustrated in figure, graph databases demonstrate significantly lower execution times across 

all tested behavior analysis tasks compared to relational databases. The performance advantage 
becomes more pronounced for structurally complex operations such as path reconstruction and 
centrality ranking, where the relational model incurs substantial overhead due to join-based traversal. 
This trend underscores the scalability and efficiency of graph-native querying, particularly in 
scenarios involving multi-hop relationships and dynamic user interactions [8]. These results support 
the adoption of graph databases as a more performant solution for behavior-centric analytical 
workloads. 
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Applications of graph-based behavior analysis in real-world systems 
The practical applications of graph-based behavior analysis extend far beyond academic 

experimentation. In commercial and operational environments, graph databases are increasingly 
employed to power mission-critical systems that rely on understanding user intent, context, and 
interaction history. 

One key application domain is fraud detection, where relationship structures often reveal 
collusive behavior or anomalous transaction flows. Graph models enable the identification of subtle 
patterns, such as shared devices across multiple accounts or coordinated login sequences, which 
would remain undetected in flat data representations. 

Another major area is personalized recommendation systems, where user-to-user or user-to-
content graphs are leveraged to model affinities and co-engagement. Unlike traditional collaborative 
filtering based on matrix factorization, graph-based methods capture contextual dependencies and 
multi-step relationships (e.g., user → item → tag → user), enhancing recommendation accuracy and 
explainability. 

Customer journey mapping is also increasingly powered by graph analytics. By tracing paths 
through digital touchpoints-websites, support interactions, app sessions-organizations can optimize 
experience design and reduce churn. Graph traversals help reconstruct nonlinear, multi-session 
behavior that conventional systems struggle to capture. 

Finally, in the cybersecurity domain, graph analytics are applied to user activity graphs to detect 
lateral movement, privilege escalation, and access anomalies, particularly in enterprise environments 
with zero-trust policies. These use cases validate the robustness and adaptability of graph-based 
approaches in behavior-centric decision-making systems. 

Limitations and challenges of graph databases in behavior analysis 
Despite their advantages, graph databases are not a universal solution. Their adoption in 

behavior analytics comes with a range of limitations that must be considered when designing real-
world systems. 

One key challenge is scalability under high-volume write operations. While graph traversal is 
efficient for reads, ingesting large-scale behavioral logs in real time may require careful tuning, 
partitioning, or even polyglot persistence approaches where ingestion is offloaded to stream 
processors. Another issue is tooling maturity and standardization. While SQL is universally supported 
and optimized across decades, graph query languages like Cypher, Gremlin, and GSQL still lack full 
interoperability and may involve vendor lock-in. This can impact long-term maintainability and 
ecosystem integration. 

Query optimization in graph databases also requires graph-specific expertise. Traversals that 
seem intuitive can become inefficient without appropriate indexing, cardinality management, or query 
rewriting. Performance tuning demands an understanding of graph topology, data distribution, and 
storage backend characteristics. Moreover, cost modeling and capacity planning are less predictable 
in graph systems, particularly under highly dynamic workloads. Horizontal scaling strategies like 
sharding remain more complex in graph databases due to their inherent reliance on relationship 
locality. 

Lastly, compliance and auditability pose additional concerns. Unlike relational systems with 
mature logging and rollback mechanisms, ensuring consistent governance in GDB environments 
requires custom implementation, especially when dealing with sensitive behavioral data under GDPR 
or CCPA frameworks. Figure 4 provides a visual overview of the relative weight of these limitations, 
based on expert evaluation and literature trends. The prominence of write scalability and tooling 
immaturity underscores the importance of architectural readiness and operational planning when 
integrating graph solutions into analytics workflows. 
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Figure 4. Major limitations of graph databases in behavior analysis 

The analysis presented in this section highlights that, while graph databases offer substantial 
analytical advantages, their adoption introduces a distinct set of architectural and operational 
challenges. As shown in figure, write scalability and tooling maturity represent the most prominent 
concerns, especially in high-throughput or enterprise-grade deployments. Issues related to query 
optimization, cost predictability, and compliance further underscore the need for specialized expertise 
and robust infrastructure planning. These findings emphasize that graph databases should not be 
viewed as drop-in replacements for traditional systems, but rather as complementary technologies 
that require deliberate integration and governance strategies to deliver sustained value in user 
behavior analytics [9]. 

Future directions in graph-based behavior analytics 
As digital ecosystems continue to grow in complexity and scale, graph-based approaches to 

behavior analysis are poised to play an increasingly central role in intelligent decision-making. 
Emerging technological and methodological trends suggest several key directions for the evolution 
of this field. 

One prominent development is the convergence of graph databases and machine learning. 
Techniques such as graph embeddings, graph neural networks (GNNs), and link prediction models 
are enabling systems to move beyond explicit querying into predictive and prescriptive analytics. This 
shift allows for more adaptive personalization, real-time fraud anticipation, and autonomous user 
segmentation-particularly when graph representations are integrated into ML pipelines. 

Another promising area is the adoption of temporal and dynamic graph models, which extend 
static graphs with time-aware semantics. In behavior analysis, user actions are inherently temporal 
and context-dependent. Dynamic graphs allow analysts to capture evolving relationships, detect 
behavioral shifts over time, and correlate events across sessions, devices, or platforms. 

Standardization of graph query languages is also likely to influence adoption. Initiatives such 
as GQL (Graph Query Language) aim to unify diverse graph querying approaches (e.g., Cypher, 
Gremlin, SPARQL) under a common standard, improving interoperability and reducing vendor lock-
in. This evolution will lower the barrier to entry and foster the integration of GDBs into mainstream 
data platforms [10]. 

Lastly, graph-based systems are expected to become more tightly integrated with cloud-native 
infrastructures. Serverless graph engines, streaming-compatible ingestion pipelines, and managed 
GDB services will make it easier to deploy scalable, real-time behavior analytics at lower operational 
cost. 

These trajectories suggest that graph-based behavior analytics is not only a viable tool for 
current challenges, but a foundational technology for the next generation of user-centric, intelligent 
systems. Figure 5 presents a strategic outlook on key technological trends, showing how impact and 
estimated adoption timelines vary across graph-centric innovations in analytics. 
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Figure 5. Strategic projection of key trends in graph-based behavior analysis 

The visualization in figure highlights the rising importance of Graph ML and cloud-native 
architectures, with both expected to exert high impact on behavioral analytics within the next few 
years. Temporal modeling and streaming integration are also gaining traction as organizations seek 
real-time, context-aware insights [11]. The relatively earlier maturation of standardized query 
languages suggests that ecosystem interoperability will play a foundational role in enabling these 
advanced capabilities. Collectively, these trends point toward an increasingly intelligent, adaptive, 
and event-driven analytics paradigm grounded in graph technologies. 

Conclusion 
The use of graph databases for user behavior analysis represents a significant advancement in 

the modeling and interpretation of complex, relationship-driven data. Unlike traditional relational 
systems, graph databases enable native traversal of interconnected behavioral entities, allowing for 
more intuitive and efficient querying of user paths, influence networks, and temporal patterns. This 
advantage is particularly evident in multi-hop queries and dynamic interaction scenarios, where 
relational models face performance and modeling limitations. 

Throughout the study, key aspects of graph-based behavior analytics were examined, including 
modeling strategies, query techniques, graph algorithm applications, integration into analytical 
pipelines, and performance comparisons. The empirical results and visualizations confirm that graph 
databases consistently outperform relational systems in structurally complex analytical tasks, 
providing both scalability and analytical depth. At the same time, several practical limitations-such 
as write scalability, query complexity, and compliance concerns-highlight the need for careful 
architectural planning and operational maturity. 

Looking ahead, the convergence of graph technologies with machine learning, temporal 
modeling, and cloud-native infrastructure suggests a promising future for behavior analytics. Graph-
based systems are well positioned to become a core component of next-generation intelligent 
platforms, supporting adaptive, real-time, and context-aware decision-making across industries. The 
findings presented in this paper contribute to a deeper understanding of how graph databases can be 
leveraged to extract value from behavioral data and support the design of resilient, user-centric 
analytics architectures. 
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