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Abstract

This article explores the integration of neural networks into cybersecurity frameworks for
distributed cloud systems. The study examines architectural requirements, deployment strategies,
model robustness, and resilience to adversarial attacks. Particular attention is paid to real-time
anomaly detection, scalability, and the challenges of maintaining model integrity across decentralized
environments. The proposed approaches demonstrate the effectiveness of neural models in enhancing
threat detection and adaptive defense mechanisms in complex cloud infrastructures.

Keywords: neural networks, cybersecurity, distributed cloud systems, anomaly detection,
adversarial training, model robustness, threat intelligence, scalability.

AHHOTaNUA

Crarbs TOCBsIEHAa MHTErpalliM HEHPOCETEBBIX MOJENEeH B CHUCTEMBl OOECIEYECHHUs
KnOepOe30macHOCTH  paclpelesEHHBIX  O00NMauHbIX cpen. PaccMaTpuBaroTcst  apXUTEKTypHBIC
0COOEHHOCTH, CTpAaTeruy pa3BEPTHIBAHUS, YCTOMYMBOCTh MOJENEH K arakaM M MX CIHOCOOHOCTH K
aJlanTUBHOMY OOHApYXCHUIO aHOMAJIWK B peajbHOM BpeMeHH. OTIelbHOE BHHUMAHHE YACICHO
BONPOCAM MAacIITaOMPYeMOCTH M 3alIUThl MOJENM OT BHEIIHETO0 BO3ACHCTBUS B YCIIOBHSX
JCLEHTPAIN30BaHHOW  MHQpacTpykTypbl.  [IpencraBneHHble  MOAXOABl  JAEMOHCTPHPYIOT
3¢ (dEeKTUBHOCTh HEUPOCETel B KOHTEKCTE 00CCTICUeHUSI MHTEIUIEKTYaTbHOW M YCTOMYHUBOM 3aIIUTHI
OOJIAYHBIX CHUCTEM.

KiroueBblie ciioBa: HeiipoceTu, kKubepOe30macHOCTb, pacnpeaenéHabie 001aka, OOHapyKEeHHE
aHOMaJIMH, ajaBepcapuaibHOe OOYy4YEeHHE, YCTOHYMBOCTb MOJIENH, HHTEIUICKTyaJbHas 3alluTa,
MacITabupyemMocTh.

Introduction

In the context of rapidly expanding digital infrastructures, distributed cloud systems have
become a fundamental component of contemporary information technologies. These systems ensure
scalability, resilience, and operational flexibility by decentralizing data processing across
geographically dispersed nodes. However, their open and dynamic architecture introduces new
vectors for cyber threats that traditional security mechanisms are often insufficient to address.
Increasingly complex attacks such as Advanced Persistent Threats (APTs), zero-day exploits, and
multi-stage intrusions exploit the distributed nature of cloud environments, targeting vulnerabilities
across services, interfaces, and orchestration layers.

Against this backdrop, neural networks (NNs) have gained attention for their ability to
recognize patterns and anomalies in high-dimensional datasets, making them promising candidates
for augmenting cybersecurity mechanisms. Unlike rule-based systems, which require predefined
heuristics, NNs can learn from historical data and adapt to evolving attack patterns. Their use in
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intrusion detection, behavioral profiling, and predictive threat modeling has demonstrated superior
performance, particularly in scenarios where traditional systems produce high false-positive rates or
fail to generalize across diverse threat landscapes.

The present study aims to examine the integration of neural networks into cybersecurity
frameworks specifically tailored for distributed cloud systems. The objective is to systematize
architectural approaches, analyze the efficiency of various NN-based detection methods, and identify
key challenges associated with deployment, such as latency, model drift, and data privacy concerns.
The results are expected to inform the development of adaptive, intelligent, and scalable defense
strategies aligned with the architectural characteristics of distributed computing infrastructures.

Main part. Conceptual framework for neural network-based cybersecurity in distributed
cloud systems

Ensuring robust cybersecurity in distributed cloud systems necessitates a departure from static,
signature-based defense models toward intelligent, adaptive solutions. Neural networks, as a class of
machine learning algorithms capable of identifying complex nonlinear dependencies, present an
opportunity to redesign core security logic in such systems. Rather than treating security as a
peripheral concern, modern architectures are increasingly embedding intelligent modules into the
operational layers of infrastructure.

As illustrated in figure 1, neural networks are positioned as a foundational enabler of
cybersecurity across distributed systems and cloud environments. This conceptual model reflects the
essential role of NNs in enabling automated analysis of system behavior, detection of anomalous
activity, and adaptive mitigation strategies. Cybersecurity, in this context, is not treated as a static
perimeter but as an evolving, intelligent process informed by continuous data-driven inference.

neural
networks

d

- cybersecurity

U“i\ [ Sl

\\\
\

distr

Figure 1. Integration of neural networks into cybersecurity architecture for distributed cloud systems

The interplay between these layers-neural intelligence, security enforcement, and distributed
computing-forms a feedback loop where observations lead to predictions, predictions to actions, and
actions to new data. By structuring defense in this way, organizations can transition from reactive
incident response to proactive risk anticipation. This model also accommodates the volatility and
scale of distributed architectures, where static rule sets and pre-configured filters prove insufficient.
Neural network models, trained on system logs, traffic metadata, or behavioral patterns, offer
dynamic detection capacity that aligns with the flexibility required by modern cloud systems [1].

Neural network implementation for anomaly detection in cloud system logs

Anomaly detection is a core component of modern security frameworks, particularly in the
context of distributed cloud environments where telemetry data is abundant and diverse. NNs are
increasingly utilized for this task due to their capacity to generalize from high-dimensional inputs and
detect patterns indicative of abnormal system behavior. These models are especially effective in
scenarios involving structured logs, where statistical and temporal features can be extracted to inform
classification.

The code sample below presents a basic implementation of a feedforward NN using the PyTorch
library. The model is trained to distinguish between normal and anomalous log events based on
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numerical features, enabling integration into security pipelines for real-time or batch-based inference

[2].

import torch
import torch.nn as nn

class AnomalyDetector(nn.Module):
def init (self, input_size):
super(AnomalyDetector, self). init ()
self.model = nn.Sequential(
nn.Linear(input_size, 128),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 2) # Binary classification

)

def forward(self, x):
return self.model(x)

The model consists of three fully connected layers with non-linear activation and dropout for
regularization. It is compact enough for deployment on edge nodes within the distributed
infrastructure, where resource constraints limit the applicability of more complex architectures. When
trained on labeled log data, the network can achieve substantial improvements over heuristic or rule-
based systems, particularly in detecting novel or obfuscated threats.

Comparative analysis of anomaly detection methods in distributed cloud environments

Security monitoring systems in distributed clouds must contend with high-throughput data
streams and fragmented log sources, often requiring automated anomaly detection to operate at scale.
Several algorithmic families are typically applied in this context: statistical models, tree-based
learners, and NNs [3]. While each class offers specific strengths, their suitability varies depending on
the structure, volume, and temporal characteristics of the input data.

Table 1 presents a comparative evaluation of four representative methods commonly employed
for anomaly detection in distributed systems. Evaluation metrics include detection accuracy, false-
positive rate (FPR), adaptability to evolving threats, and compatibility with distributed deployment
models.

Table 1
Comparative characteristics of anomaly detection methods
Method Accuracy | FPR (%) Adaptive Scalability
(%) learning
Isolation forest 87.2 11.5 No Medium
Logistic regression 81.4 8.9 No High
Feedforward neural net 91.8 6.3 Yes High
LSTM-based detection 94.1 4.7 Yes Medium

The table illustrates the superior detection performance of NN-based methods, particularly
those using temporal architectures such as LSTM (Long Short-Term Memory). These models
demonstrate both higher accuracy and reduced false-positive rates when compared to conventional
approaches. Moreover, their ability to learn from streaming data enables continuous refinement
without explicit retraining, which is vital in dynamic threat landscapes.

However, trade-offs exist. Temporal models generally incur greater computational overhead
and may require batching strategies to handle input sequences effectively. Conversely, simpler models
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like Isolation Forests remain useful in constrained environments or as initial filters preceding more
sophisticated analysis.

The results underscore the importance of selecting detection algorithms not solely based on
accuracy, but also considering deployment constraints and system heterogeneity typical of distributed
cloud infrastructures.

Deployment considerations for neural network-based detection in distributed cloud
infrastructures

The operational deployment of neural network-based anomaly detection systems in distributed
cloud environments poses several practical challenges. Unlike monolithic systems, where models can
be trained and applied within a centralized architecture, distributed infrastructures demand careful
orchestration of model hosting, data streaming, and inference services. These concerns are further
amplified by the need to preserve low latency, fault tolerance, and compatibility with heterogeneous
compute environments (e.g., edge nodes, containerized microservices, serverless runtimes).

To support distributed inference, NNs are typically embedded into containerized units using
frameworks such as TensorFlow Serving or TorchServe, enabling standardized access through
RESTful APIs or gRPC endpoints. These containers are then deployed across multiple cloud regions
or edge clusters using orchestration platforms like Kubernetes. Model versioning, A/B testing, and
automated rollback mechanisms are implemented through CI/CD pipelines to ensure robust lifecycle
management. Furthermore, inference can be offloaded to specialized accelerators (e.g., GPUs, TPUs)
in nodes with higher capacity, while lightweight fallbacks are used in constrained environments.

Another critical consideration is the trade-off between local and centralized detection. In some
architectures, log streams are forwarded to a central analysis engine, where models are executed on
aggregated data to ensure global context and minimize false positives. However, this approach
increases network traffic and introduces latency. Alternatively, on-device or edge inference allows for
immediate threat recognition and localized response, which is particularly relevant for real-time
applications or systems operating in bandwidth-limited settings. Hybrid schemes-where simple
models execute at the edge and complex classifiers operate centrally-are increasingly favored to
balance latency, accuracy, and system load [4].

Additionally, security and trust in the model itself become important in adversarial
environments. Model poisoning, inference manipulation, or reverse engineering of the detection
mechanism are feasible threats if the deployment lacks appropriate hardening. Therefore, secure
enclaves, encrypted model transmission, and model fingerprinting are recommended in high-risk
scenarios. In sensitive applications, federated learning may also be considered as a privacy-preserving
strategy, enabling decentralized training across nodes without sharing raw data [5].

Threat vectors targeting neural network models in distributed cloud security systems

As neural networks become integral components of cloud-based cybersecurity frameworks,
they themselves become targets of adversarial exploitation. Threat actors increasingly shift their focus
toward the machine learning (ML) layer, leveraging architectural and training-time vulnerabilities to
undermine the detection capabilities of the models. In distributed cloud systems, where models may
be exposed through APIs or run across multiple untrusted nodes, the attack surface expands
significantly.

Figure 2 outlines the primary categories of attacks on neural networks that pose critical risks in
the context of distributed architectures. These include adversarial examples, in which malicious
inputs are designed to mislead the model; data poisoning, where training datasets are manipulated to
induce biased or dysfunctional behavior; and broader systemic vulnerabilities introduced through the
distributed nature of cloud-based ML.
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Figure 2. Types of attacks on neural network models in distributed cloud systems

Adversarial examples involve minimally perturbed inputs that appear benign to humans but
cause misclassification in neural networks. Such attacks can be mounted in real time against API-
accessible services or through tampering with input streams. These perturbations are often
imperceptible yet exploit the model's sensitivity to specific dimensions of the input space.

Data poisoning refers to the intentional contamination of training data to compromise a model’s
learning process. In distributed cloud systems where federated or multi-tenant training is used,
poisoned samples may be introduced at edge nodes or external data sources [6]. This method not only
degrades detection accuracy but may embed stealthy failure modes within the model.

Distributed attack surfaces further complicate defense, as models may be replicated or
fragmented across cloud nodes. This increases the risk of partial model exposure, gradient leakage,
and unauthorized model extraction. Without proper encryption, isolation, and access controls, these
distributed deployments may inadvertently expose the security layer to exploitation.

As shown in figure, these threat vectors converge around the model level, necessitating a shift
in cybersecurity architecture from merely protecting data and infrastructure to actively defending the
ML components themselves. This requires the implementation of adversarial training, robust model
validation, differential privacy techniques, and continuous monitoring of model outputs under
uncertainty.

Adversarial training as a defense strategy for cloud-based neural models

As neural networks are increasingly deployed in security-sensitive applications, their
vulnerability to adversarial manipulation poses a significant threat. In distributed cloud systems,
where models are exposed through public interfaces or operate on partially observable data, this risk
is amplified. One of the most effective defense strategies developed to mitigate such vulnerabilities
is adversarial training-a technique where the model is trained not only on clean examples but also on
specially crafted adversarial inputs that simulate potential attacks.

The following code demonstrates a simplified adversarial training loop using the Fast Gradient
Sign Method (FGSM), a well-known algorithm for generating adversarial examples [7]. This
implementation assumes a standard supervised classification setup with labeled data and a PyTorch
neural model.

import torch
import torch.nn.functional as F

def fgsm_attack(model, data, target, epsilon):
data.requires_grad = True
output = model(data)
loss = F.cross_entropy(output, target)
model.zero grad()
loss.backward()
data_grad = data.grad.data
perturbed data = data + epsilon * data_grad.sign()
return torch.clamp(perturbed data, 0, 1)
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def adversarial training_step(model, data, target, epsilon, optimizer):
# Generate adversarial examples
adv_data = fgsm_attack(model, data, target, epsilon)
# Combine clean and adversarial samples
combined data = torch.cat([data, adv_data])
combined target = torch.cat([target, target])
# Forward pass
output = model(combined_data)
loss = F.cross_entropy(output, combined_target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

This method introduces adversarial robustness by systematically exposing the network to
perturbed examples during training. The model learns not only from real-world inputs but also from
strategically distorted ones, thereby increasing its tolerance to input shifts, noise, and malicious
artifacts.

In distributed systems, adversarial training can be implemented either centrally during offline
model preparation or dynamically at edge nodes where federated learning is applied [8]. While the
latter introduces greater complexity, it ensures localized resilience to region-specific attacks.
Additionally, the combination of adversarial training with techniques such as dropout regularization
and input normalization further improves generalization under threat conditions.

Conclusion

The integration of neural networks into cybersecurity systems for distributed cloud
infrastructures represents a critical evolution in the defense against increasingly complex and adaptive
cyber threats. Unlike traditional rule-based mechanisms, NNs provide a scalable and data-driven
approach to anomaly detection, intrusion prevention, and behavioral analysis. Their ability to
generalize across heterogeneous inputs makes them particularly well-suited for dynamic and
decentralized cloud environments.

Throughout this study, several key aspects of such integration have been examined:
architectural compatibility, real-time deployment challenges, model performance under operational
constraints, and exposure to adversarial threats. The results indicate that, when properly embedded
within distributed architectures, NN-based modules not only enhance detection accuracy but also
enable autonomous adaptation to evolving threat landscapes.

Nonetheless, the adoption of neural models must be accompanied by robust security measures,
including adversarial training, model isolation, and integrity verification. These safeguards are
essential to prevent exploitation of the models themselves, especially in publicly accessible or multi-
tenant cloud settings. Future work should explore the use of federated learning, secure multi-party
computation, and lightweight neural architectures to improve both security and deployability in
resource-constrained distributed systems.
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Abstract

Deep learning techniques are increasingly used to detect malicious anomalies in IoT
environments, where traditional security mechanisms fail to scale or adapt to dynamic data flows.
This study evaluates various neural network architectures suitable for constrained devices, analyzes
deployment models from edge to cloud, and examines the resilience of DL systems to adversarial
threats. Practical implementation details, including preprocessing pipelines and lightweight inference,
are presented alongside comparative performance metrics. Challenges related to data availability,
explainability, and system heterogeneity are identified as critical barriers to widespread adoption.

Keywords: IoT security, anomaly detection, deep learning, edge computing, neural networks,
adversarial robustness, model deployment, cyber threats.

AHHOTAIHUSA

I'myGokue HelipoceTeBbIe METOIbI HAXOIAT BCE OoIiee HIMPOKOe MPUMEHEHHUE 115l 0OHAPYKEHHS
BPEIOHOCHBIX aHoManui B cpene loT, rae TpaguuuoOHHBIE CPEACTBA 3aIUMTHI OKAa3bIBAIOTCS
HeocTaToYHbIMH. [IpencTaBieHsl pa3nuuHble apXUTEKTypbl HEHPOHHBIX CeTEH, alalTUPOBAHHbBIE K
pPECYPCHBIM OIPAaHUYEHUSAM YCTPOMCTB, PACCMOTPEHBbl CTPAaTETMU pPAa3BEPTHIBAHUS MOJENIEH OT
JIOKaJIbHOTO YPOBHA J10 OOJlaka M MPOBENEH aHalu3 YCTOMUMBOCTU K aTaKyIOIIUM BO3ACUCTBUSIM.
Omnwucanbl MOAX0ABI K MpenoOpaboTke JaHHBIX U OpraHu3anuu obierd€éHHoro uHdpepenca. Ocodoe
BHUMAaHHE YJEJIEHO MpolieMaM JOCTYIHOCTH JaHHBIX, OObSICHUMOCTH MOJENIEH U pa3zHOOOpasus
anmaparHbIX IaTGOPM.

KuroueBblie cioBa: 6e3onacHocth 10T, oOHapyxkeHrne aHOMamnuii, rmybokoe oOydenue, edge-
BBIUMCIICHUS, HEHPOHHBIE CETH, YCTOWYMBOCTH K aTakaM, pa3BEPThIBAaHUE MOJIeNei, KHOepyTpO3bI.

Introduction
The proliferation of Internet of Things (IoT) devices has redefined the architecture of modern
digital ecosystems. These devices, deployed across industrial, medical, and consumer domains,
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generate continuous streams of sensor data and operational telemetry. Despite their utility, IoT
environments are inherently vulnerable to security threats due to limited computational resources,
weak authentication schemes, and diverse firmware configurations. Consequently, the detection of
malicious anomalies within such systems remains a critical challenge in maintaining the integrity of
connected infrastructures.

Traditional rule-based security mechanisms, while effective in constrained scenarios, lack
adaptability and scalability when applied to dynamic and heterogeneous IoT networks. Signature-
based methods often fail to detect novel or obfuscated attacks, and their performance deteriorates as
data volume increases. In contrast, deep learning (DL) techniques offer promising alternatives by
enabling the automatic extraction of abstract features and pattern recognition from raw data. When
trained on representative datasets, DL models can identify previously unseen malicious behaviors
with high accuracy and minimal manual intervention.

The aim of this study is to investigate the applicability of DL-based architectures for detecting
malicious anomalies in IoT environments. The research focuses on evaluating neural models for
anomaly classification, analyzing deployment constraints specific to edge computing devices, and
presenting visual and tabular comparisons of performance metrics. Through this work, we seek to
outline the practical considerations and technical advantages associated with using intelligent
detection systems in loT-based infrastructures.

Main part. IoT architecture and threat landscape

The architecture of IoT ecosystems is inherently decentralized, composed of interconnected
edge devices, local gateways, and cloud services. Devices often operate with minimal supervision,
limited firmware protection, and weak cryptographic modules. These factors, combined with large-
scale deployments and wireless communication channels, make 10T infrastructures attractive targets
for malicious actors. Attacks may originate from compromised firmware, lateral movement within
networks, or spoofed control commands that exploit weak authentication protocols.

Common threat vectors include botnet traffic propagation, firmware injection, distributed
denial-of-service (DDoS) attempts, port scanning, and brute-force access to credentials. These
anomalies may not immediately disrupt functionality but can significantly compromise data integrity,
network availability, and system trustworthiness. Effective detection requires monitoring both
network traffic and device-level behavioral signatures [1].

As shown in figure 1, botnet-related anomalies account for the largest portion of malicious
activity detected in IoT environments, followed by firmware injection and denial-of-service patterns.
This distribution highlights the need for anomaly detection systems that can differentiate subtle
variations in traffic patterns and behavioral deviations.
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Figure 1. Prevalence of malicious activity types in [oT environments
The figure illustrates the relative frequency of major attack types targeting IoT devices based
on recent empirical datasets. Botnet traffic is the most common, reflecting the ease with which devices
can be recruited into large-scale coordinated attacks, while firmware injection remains a critical
concern due to its persistence and stealth.
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Deep learning models for anomaly detection in iot systems

The application of DL methods in the detection of malicious anomalies within [oT systems
requires careful alignment between algorithmic complexity and resource constraints. Unlike
traditional enterprise networks, IoT devices often operate under limited computational capacity,
power restrictions, and connectivity variability. As a result, models deployed in such contexts must
balance detection accuracy with efficiency and portability.

Convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and
autoencoders are among the most widely adopted DL architectures for anomaly detection in streaming
data. CNNs are effective for extracting spatial patterns from preprocessed network traffic features,
while LSTMs capture temporal dependencies in sequential telemetry data. Autoencoders, especially
in their variational form, can learn compact representations of normal behavior and identify
deviations as reconstruction errors [2].

Edge deployment imposes additional constraints: inference latency must remain low, model
size must be minimal, and updates must be incrementally applied without complete retraining. To
address these issues, model compression techniques such as pruning, quantization, and knowledge
distillation are frequently applied after training. Moreover, training itself is typically conducted
offline in centralized environments, and only the final inference model is exported to the device.

The example below illustrates a compact feedforward neural network in PyTorch, designed for
binary anomaly classification. The model accepts engineered feature vectors derived from packet
metadata or system logs and outputs a probability of malicious behavior.

import torch
import torch.nn as nn
import torch.nn.functional as F

class loT AnomalyDetector(nn.Module):
def init (self, input_dim):
super(IoT AnomalyDetector, self). init ()
self.fcl = nn.Linear(input_dim, 64)
self.fc2 = nn.Linear(64, 32)
self.dropout = nn.Dropout(0.25)
self.output = nn.Linear(32, 2) # 2 classes: normal, anomaly

def forward(self, x):
x = F.relu(self.fc1(x))
x = self.dropout(F.relu(self.fc2(x)))
return self.output(x)

This architecture is intentionally shallow and lightweight, making it suitable for execution on
edge hardware such as ARM-based microcontrollers or embedded Linux boards. While more complex
architectures may yield marginal improvements in accuracy, they do so at the cost of inference speed
and energy consumption-two critical parameters in real-time IoT systems [3].

Training such models requires labeled datasets that capture both benign and malicious activity,
with an emphasis on generalizability across device types and usage scenarios. Data augmentation and
regularization techniques help prevent overfitting, especially when anomaly samples are scarce or
imbalanced. Ultimately, the success of DL-based anomaly detection in IoT hinges on its ability to
adaptively generalize while remaining lightweight and interpretable.

Model comparison for anomaly detection in IoT environments

The choice of deep learning architecture for anomaly detection in IoT systems must be driven
by a balance between classification performance, resource efficiency, and adaptability to streaming
conditions. Unlike general-purpose computing environments, [oT deployments operate under highly
constrained conditions where even modest increases in model complexity can render real-time
detection impractical. As a result, model selection must consider not only accuracy metrics but also
inference latency, memory footprint, and robustness to noisy or incomplete data.
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Three dominant classes of models are evaluated in this context: feedforward networks (FFNs),
recurrent architectures such as LSTM networks, and autoencoder-based anomaly detection systems.
FFNs are computationally lightweight and well-suited for tabular input derived from structured logs
or metadata. LSTMs, on the other hand, offer improved performance in time-series contexts, where
sequence dependencies are essential for capturing temporal anomalies. Autoencoders provide a
flexible unsupervised approach, capable of detecting unknown attacks by modeling the normal
operational space and identifying deviations as reconstruction errors.

Table 1 presents a comparative analysis of these models based on empirical benchmarks from
IoT-specific datasets. The evaluation includes multiple criteria: detection accuracy, false positive rate
(FPR), average inference time per sample, and model size (in MB) after compression. All models
were trained on the same preprocessed dataset and evaluated using a standardized test protocol.

Comparative evaluation of DL models for anomaly detection in IoT ool
Model Accuracy (%) | False positive | Inference time Model size (MB)
rate (%) (ms)
Feedforward NN 91.2 54 3.2 0.7
LSTM 94.7 3.1 12.8 3.5
Autoencoder 89.6 6.2 5.6 1.1

The results show that LSTM networks achieve the highest overall accuracy (94.7%) and lowest
FPR (3.1%), making them ideal for high-integrity anomaly detection in streaming telemetry.
However, they exhibit longer inference times and larger model sizes, which may limit their feasibility
on low-power devices. FFNs offer a compact and fast alternative, sacrificing a small margin in
accuracy for a 4x reduction in latency. Autoencoders provide strong performance in unsupervised
scenarios but require careful tuning to avoid underfitting normal patterns or overflagging benign
anomalies.

Ultimately, the model choice should align with the deployment target: LSTMs are appropriate
for centralized or gateway-based analysis, while FFNs and compressed autoencoders are better suited
for edge-level detection on individual IoT devices. Hybrid strategies, in which lightweight models
flag suspicious behavior and forward events to a centralized engine for deeper analysis, may offer an
optimal balance between responsiveness and detection fidelity.

Deployment strategies for DL-based anomaly detection in IoT

The integration of deep learning models into IoT security infrastructure requires deployment
strategies that align with the operational characteristics of the system. Unlike traditional IT
environments, IoT networks often exhibit constraints in processing power, memory availability,
connectivity bandwidth, and update frequency. Therefore, deployment scenarios must be carefully
selected based on the location of inference, required response time, and data sensitivity.

Deployment on a single device (local edge) prioritizes minimal latency and independence from
external connectivity. In this configuration, a small feedforward neural network is embedded directly
into the device firmware or local runtime environment. This setup is optimal for scenarios requiring
millisecond-level decisions, such as real-time access control or actuator response. However, it
restricts model complexity and update frequency, making it suitable primarily for known threat
profiles.

Gateway-level aggregation offers a trade-off between performance and visibility. Data from
multiple devices is aggregated at a local node, where models such as LSTMs can be used to analyze
temporal patterns and detect coordinated anomalies [4]. This architecture allows for more powerful
detection while maintaining acceptable inference latency and supporting periodic model updates.

Cloud-based central analysis provides the highest analytical power by utilizing sophisticated
architectures like autoencoders or transformers on aggregated data. This approach enables continuous
model refinement and access to broader datasets, which improves detection quality. However, it
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introduces latency and requires reliable connectivity, which may not be suitable for latency-sensitive
IoT applications.

Federated learning is an emerging approach that enables distributed training across multiple
IoT nodes without sharing raw data. Lightweight models such as pruned FFNs or LSTMs are updated
locally and only gradients or model updates are transmitted securely. This model preserves privacy,
supports adaptability, and reduces communication overhead-but depends on synchronization and
secure update aggregation.

A hybrid cascade detection strategy combines local lightweight models for initial anomaly
scoring with selective forwarding of suspicious samples to a centralized analysis engine. This
architecture balances response time and accuracy while minimizing data transfer. It is particularly
effective in scenarios where bandwidth is limited but detection confidence must remain high.

Table 2 summarizes the comparative characteristics of these deployment strategies across
multiple operational dimensions.

Table 2
Deployment strategies for DL-based anomaly detection in [oT
Deployment scenario Model type Latency Connectivity Update
requirement dependence strategy
Single-device  (local | Feedforward NN | Ultra-low (<5 ms) |Low Static model
edge)
Gateway-level LSTM Low to moderate | Medium Periodic batch
aggregation (5-20 ms) update
Cloud-based central | Autoencoder /|Moderate to high|High Continuous
analysis Transformer (20-100 ms) retraining
Federated  learning|Compressed FFN|Moderate (10-30|Medium Secure
(multi-device) or LSTM ms) federated
update
Hybrid cascade | Lightweight local | Split latency (250 | Variable Trigger-based
detection + full remote ms) escalation

The table highlights the trade-offs associated with each strategy and illustrates how deployment
decisions impact model selection, update mechanisms, and latency constraints. No single approach
fits all scenarios; rather, deployments must be tailored to the specific constraints and objectives of the
target loT application domain.

Data preprocessing and lightweight inference on IoT edge devices

The effectiveness of DL-based anomaly detection in IoT settings depends not only on the
architecture of the model but also on the preprocessing pipeline and the runtime execution strategy.
In edge scenarios, both stages must be computationally efficient, modular, and capable of handling
incomplete or noisy sensor input.

Preprocessing typically involves normalization, feature extraction, and dimensionality
reduction. For structured IoT logs or packet-level telemetry, relevant features include source and
destination IP entropy, payload size variability, time between packets, and protocol distribution. These
features are computed using sliding windows and prepared in fixed-size vectors suitable for input into
a compact neural network [5].

The example below shows a lightweight preprocessing and inference pipeline using PyTorch
and NumPy, tailored for execution on embedded Python runtimes such as MicroPython or edge
containers.

import numpy as np

import torch

import torch.nn.functional as F

from trained_model import loTAnomalyDetector # pretrained model class

Ne 2/2025 Journal «Professional Bulletin. Information Technology and Security» 14



The scientific publishing house «Professional Bulletin»

# Example input: feature vector from loT device log

def extract_features(packet stream):
avg_payload = np.mean([p['payload_size'] for p in packet_stream])
std_interval = np.std([p['timestamp_diff'] for p in packet stream])
proto_count = len(set(p['protocol'] for p in packet stream))
return np.array([avg_payload, std_interval, proto_count], dtype=np.float32)

# Normalize and convert to tensor
def normalize and_infer(feature_vector, model, mean, std):
normalized = (feature vector - mean) / std
X_tensor = torch.tensor(normalized).unsqueeze(0)
with torch.no_grad():
logits = model(x_tensor)
probabilities = F.softmax(logits, dim=1)
return probabilities[0][1].item() # probability of anomaly

# Sample execution

features = extract_features(packet stream)

model = IoT AnomalyDetector(input dim=3)

model.load_state dict(torch.load("iot_detector.pt", map_location='cpu'))
model.eval()

anomaly score = normalize and infer(features, model, mean=np.array([200, 0.5, 4]),
std=np.array([100, 0.2, 2]))
print(f" Anomaly probability: {anomaly score:.3f}")

This compact pipeline can be deployed in environments where full-stack frameworks like
TensorFlow are too resource-intensive. Once trained and quantized, the model can be stored in less
than 1 MB, enabling fast and reliable predictions directly on the device or local gateway. For
deployments with intermittent connectivity, the output (anomaly score) can be logged locally or sent
asynchronously to a central server only when it crosses a configurable threshold.

By combining efficient feature engineering with optimized inference routines, this setup
enables real-time anomaly detection that is both robust and operationally viable across a range of
embedded IoT platforms.

Resilience of DL models to adversarial threats in IoT systems

Despite their effectiveness in detecting complex anomalies, DL models deployed in IoT
environments are not immune to adversarial threats. In fact, their reliance on learned representations
makes them susceptible to subtle manipulations in the input space or model internals, especially when
deployed in open or distributed settings. Understanding and mitigating these vulnerabilities is critical
to preserving the reliability of anomaly detection systems.

One common attack vector is adversarial perturbation, in which an attacker slightly modifies
legitimate inputs to induce misclassification without altering the data in a semantically noticeable
way. Feedforward and recurrent models are particularly vulnerable to such perturbations, especially
when trained without noise-aware regularization. These attacks can be countered using adversarial
training or input smoothing techniques that improve the model's robustness.

Data poisoning attacks occur during the training phase and are especially relevant in federated
or decentralized systems. By injecting carefully crafted samples into the training dataset, an attacker
can degrade model performance or induce false negatives on malicious patterns. Defensive strategies
include robust aggregation mechanisms, outlier detection, and selective validation of incoming data.

More subtle threats include model inversion, which exploits access to outputs or gradients to
reconstruct sensitive input data. This attack is most feasible in centralized deployments of lightweight
models. Encryption of model parameters and restricted inference access are the primary
countermeasures [6].
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In network-level scenarios, evasion via protocol mimicry is a growing concern. Attackers craft
traffic patterns that imitate benign behavior to avoid detection by models trained on protocol statistics
or packet structure. Autoencoders are particularly at risk here, as they often fail to distinguish
structurally valid but semantically harmful input. Solutions involve integrating protocol-specific
fingerprinting and traffic segmentation into the feature engineering pipeline.

Finally, gradient leakage poses a privacy risk in federated settings. If updates from client
devices are not aggregated securely, an attacker can infer training data characteristics from shared
gradients. This risk is mitigated through secure aggregation protocols and differential privacy
techniques that introduce randomness into updates without significantly compromising learning
quality [7].

Table 3 summarizes key attack types, their impact on DL-based IoT detection systems, and
corresponding mitigation strategies.

Table 3
Resilience of DL models to adversarial threats in [oT systems
Attack type Vulnerable models Impact Mitigation strategies
Adversarial FFN, LSTM Misclassification of | Adversarial training, input
perturbation malicious input smoothing
Data poisoning All (training-stage| Model degradation and false|Robust  training, data
issue) negatives validation
Model inversion FFN  (centralized|Exposure of input data|Access control, model
deployment) patterns encryption
Evasion via | Autoencoder Undetected malicious traffic | Traffic fingerprinting,
protocol mimicry patterns statistical modeling
Gradient leakage |Federated LSTM  |Loss of privacy in local|Secure aggregation,
updates differential privacy

As the threat landscape evolves, designing resilient learning architectures must become a core
consideration in [oT security. This includes not only protecting against direct attacks but also enabling
post-deployment model auditing and anomaly explanation to improve transparency and trust.

Practical limitations of DL-based anomaly detection in IoT

While deep learning has demonstrated promising results in detecting malicious activity within
IoT infrastructures, its real-world adoption faces several practical constraints. These limitations span
technological, organizational, legal, and operational domains, each of which must be addressed to
facilitate secure and sustainable deployment [8].

One of the primary challenges is the scarcity of high-quality labeled datasets. Effective
supervised training requires large volumes of diverse anomaly-labeled data, which is rarely available
in IoT deployments. Many organizations lack centralized logging infrastructure or data retention
policies, leading to fragmented, incomplete, or non-standardized datasets. Furthermore, privacy
regulations may restrict the collection of raw telemetry data, especially in medical or consumer-facing
applications.

Another obstacle is the fragmentation of IoT device ecosystems. Vendors utilize different
hardware platforms, operating systems, and communication protocols, resulting in highly
heterogeneous environments [9]. DL models trained on one device type or network context may not
generalize well to others without additional tuning or retraining. This hampers model portability and
increases the cost of cross-platform support.

Regulatory and compliance considerations also play a critical role. For example, anomaly
detection models deployed in regulated industries (e.g., healthcare, critical infrastructure) must be
explainable and certifiable [10]. Many DL systems operate as “black boxes,” making it difficult to
justify security decisions to auditors or regulatory authorities. Efforts to integrate explainable Al into
IoT security remain limited and experimental.
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In terms of operational maintenance, updating DL models in the field is a non-trivial process.
Over-the-air updates may pose security risks themselves, while manual update cycles are labor-
intensive and error-prone. Moreover, most IoT devices lack the capability for full retraining or real-
time adaptation, requiring the use of transfer learning, distillation, or cloud-assisted update
architectures.

Lastly, cost and energy consumption remain persistent concerns. Even with model compression
and inference optimization, the deployment of DL components increases hardware complexity, power
requirements, and overall system cost-particularly in battery-operated or large-scale sensor
deployments.

Addressing these limitations will require advances not only in model architecture but also in
system design, regulatory frameworks, data infrastructure, and vendor collaboration [11]. Until these
gaps are resolved, the adoption of DL-based anomaly detection in IoT environments will likely be
confined to controlled or high-value scenarios.

Conclusion

The increasing ubiquity of IoT devices across critical sectors has intensified the need for
effective and scalable anomaly detection systems capable of identifying malicious behavior in real
time. Traditional security mechanisms are ill-suited to the dynamic and resource-constrained nature
of IoT environments, prompting a shift toward deep learning-based approaches that can learn complex
behavioral patterns and generalize to previously unseen threats.

This study explored the architectural and operational dimensions of applying deep learning to
anomaly detection in IoT networks. It examined key model types, deployment strategies, and their
respective trade-offs in terms of accuracy, latency, and computational overhead. Furthermore, the
work highlighted practical challenges including adversarial vulnerability, privacy risks, and the
limited availability of labeled datasets for supervised learning. Through comparative analysis and
code-level examples, the paper demonstrated how lightweight neural architectures can be effectively
adapted to the IoT context while maintaining sufficient robustness and interpretability.

Although deep learning offers significant potential for enhancing IoT security, its successful
deployment requires a multidimensional approach that considers infrastructure heterogeneity,
regulatory compliance, update logistics, and adversarial resilience. Future research should focus on
building adaptive, explainable, and energy-efficient models capable of long-term operation in real-
world edge environments. In doing so, DL-based anomaly detection can become a foundational
component of next-generation loT cybersecurity frameworks.
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Abstract

The article explores the stages in the evolution of web architectures within the context of
industrial IT systems — from monolithic and centralized solutions to distributed models, including
edge computing. It analyzes architectural and network transformations associated with the shift
toward edge-based computation, as well as the impact of these changes on fault tolerance, processing
latency, and node autonomy. It is emphasized that the implementation of edge infrastructures requires
new approaches to containerization, communication protocols, and security. Special attention is given
to the use of edge computing for inventory management, production processes, and integration with
ERP/SCADA systems. Practical examples from high-precision manufacturing and logistics sectors
are presented. The article underscores the need to rethink architectural principles in the era of
industrial digitalization.

Keywords: web architectures, edge computing, containerization, industry, protocols,
microservices.

AHHOTanug

B craTthe paccMaTpuBarOTCs 3TAIbl 3BOJIIOLNN BEO-apXUTEKTYP B KOHTEKCTE MPOMBIIUICHHBIX
WUT-cucteM — OT MOHOJUTHBIX W HEHTPAIM30BAaHHBIX PEIICHUNA K PpaCIpEACICHHBIM MOJEISIM,
BKJITI04ast edge computing. AHaTM3UPYIOTCS APXUTEKTYPHBIE U CETEBbIE TPaHC(HOPMAIINHU, CBA3aHHBIC
C TepexoJOoM K BBIYUCICHHSIM Ha mepudepuu, a TaKkKe BIUSHHE OSTHX HW3MEHEHMH Ha
OTKa30yCTOMYMBOCTb, 3aJCPKKH OOpaOOTKM M aBTOHOMHOCTh Yy310B. IloguepkuBaercs, 4TO
BHenpeHue edge-uHppacTpykTyp TpeOyeT HOBBIX MOIXOIOB K KOHTEHHEpH3AIMH, MPOTOKOIAM
B3auMoJielcTBHA U Oe3onacHocTu. Ocoboe BHUMaHKE ylelIeHo MpuMeHeHHo edge computing st
yIpaBJIeHUs 3amacaMu, IMPOU3BOJCTBEHHBIMU TmporeccamMu u uHTerpauun ¢ ERP/SCADA-
cucremami. [IpencraBineHsl MpakTHUYECKUE MPUMEPHI U3 OTpaciieil BBICOKOTOUHBIX MPOU3BOICTB U
noructuku. CTaThsl aKTyalIn3upyeT HEOOXOIUMOCTh IEPEOCMBICTICHUSI ApPXUTEKTYPHBIX MTPUHIIUIIOB
B YCJIOBHUSX HU(POBU3ALIUH TPOMBIIUIEHHOCTH.

KnawueBble  ciaoBa:  web-apxutektypel, edge  computing,  KOHTeWHepu3auus,
MPOMBIIIICHHOCTD, IPOTOKOJIBI, MUKPOCEPBHUCHI.

Introduction

Modern manufacturing companies, especially in high-tech sectors, require fault-tolerant
information systems capable of rapid response amid supply chain uncertainty and increasing data
volumes from production and warehouse environments. This demand has driven a shift in web
architectures — from centralized monoliths to distributed and hybrid models that process data closer
to its source. Transitioning from cloud-based systems to edge computing addresses limitations in
network bandwidth, communication latency, and the need for uninterrupted operation during
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connectivity loss. Edge computing enables local processing, decentralizes decision-making, and
enhances the autonomy of digital production platforms, making it especially effective for inventory
management, equipment monitoring, and real-time traceability.

The current article aims to explore the evolution of web architectures in the context of their
application to industrial IT systems for controlling material flow and inventories, with a focus on the
technological and network-specific nature of edge computing. It explores infrastructural details of the
solutions like network topology design, interaction among edge nodes and the cloud service, and the
potentiality of integrating these along supply chains.

Main part. Technological evolution of web systems

The creation of web applications for the management of industrial and logistics processes
represents fundamental shifts in the methods of data processing and transmission, as well as the
architecture of software solutions. In the early days of IT infrastructure development, centralized
architectures based on mainframes and monolithic applications were common. With the advent of
distributed computing, this was superseded by the use of Service-Oriented Architecture (SOA),
followed by microservice-based solutions. SOA advocated modularity and reusability of business
logic with standardized interfaces, most commonly achieved through SOAP and XML. The evolution
towards microservices was a natural continuation of the decomposition trend: applications were
refactored into separate components, each doing a specific task and communicating with others using
lightweight REST API or message queues.

The next step in the evolution has been cloud computing, adopted by many organizations to
address scalability, optimize infrastructure costs, and manage centralized services. However, in
industrial settings, the above solutions were limited by several critical factors, including latency and
external network dependency. The need to balance centralized control with local responsiveness
initially led to the development of hybrid architectures, which combined cloud-based orchestration
with localized processing capabilities. As system demands for real-time decision-making, bandwidth
efficiency, and operational autonomy continued to grow, edge computing emerged as a logical next
step. It advanced the hybrid model by shifting more computational logic directly to edge nodes —
closer to sensors, machines, and production lines — thereby enhancing responsiveness, reducing
reliance on central connectivity, and enabling more resilient, decentralized industrial systems (table

1).

Table 1
Evolution of web architectures [1, 2]
Architectural Key features Advantages Disadvantages
model / period of
adoption
Centralized Single point of processing; | Centralized  control | Low scalability;
(mainframe /| high component coupling; | and security. single point of failure.

monolith), 1970 —
1990s

low flexibility.

Distributed (SOA

Modularity; reusability of

Flexibility; component

Complexity of service

/ microservices) components; standardized | reusability. coordination; high
2000 — 2015 interfaces. coupling in ESB
Cloud / hybrid Scalability; centralized | Rapid scaling; cost | Network latency;
2010 — present management; resource | optimization. dependence on
usage based on demand. network and cloud
providers.
Edge computing Data processing near the | Minimization of | Local infrastructure
2015 — present source. Autonomy; low | latency. Resilience to | requirements.
latency. connection loss. Complex security
assurance
infrastructure.
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As shown in the table, the evolution of web architectures in the industrial environment
represents a gradual transition from centralized, poorly scalable solutions to flexible, fault-tolerant,
and adaptive models capable of efficiently processing data near their generation sources. Each
architectural paradigm reflected the technological maturity of its time and addressed the current
challenges within the existing constraints.

Edge computing as a response to low-latency requirements

Modern manufacturing and logistics processes are increasingly demanding strict requirements
for the response time of information systems. This is due to the need for immediate response to
changes in equipment status, real-time processing of telemetry from sensors, as well as ensuring
synchronization of actions at various levels of the production chain [3]. It is against this landscape
that the edge computing model is being developed — an architectural pattern in which computations
and decision-making occur close to the source of data, in contrast to remote cloud data centers.

According to Precedence Research, the global edge computing market is estimated to be worth
$432,94 billion in 2024 and is expected to reach approximately $5132,29 billion by 2034, growing at
an average rate of 28% from 2025 to 2034. North America has remained the market leader in recent
years, accounting for about 40%.

The edge computing model is structured to address the growing need for low-latency data
processing and real-time decision-making. Three major levels constitute the edge model architecture

(fig. 1).
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Figure 1. Architecture of edge models

Devices consist of sensors, actuators, and embedded computers that produce raw data
streams. Gateways act as an intermediate layer, carrying out aggregation, preprocessing, and
preliminary data analysis. They can utilize local AI models for making independent decisions and
send only aggregated or vital data to the cloud. Local data centers, which are on-site or proximate,
do more sophisticated tasks, synchronize between nodes, and offer temporary data storage whenever
global networks are not accessible [4]. This design minimizes the network load, lowers the response
time, and increases the overall system reliability.

The implementation of edge computing as infrastructure demands tight control over network
connection properties, particularly in industrial settings where low latency and high availability are
paramount. These solutions rely on developing an infrastructure distributed network with Quality of
Service (QoS) support — a feature through which differentiation of traffic and bandwidth guaranteeing
priority data flows are provided (fig. 2).
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To ensure scalability and centralized management, the Software-Defined WAN (SD-WAN)
technology is used. It abstracts the network's logical model from physical transmission channels,
implementing routing and policy management at the software level. The global SD-WAN market
demonstrates steady annual growth, and according to QKS Group, it is expected to reach $7,04 billion
by 2030, with an annual growth rate of 19,43%.

In edge-oriented systems, SD-WAN enables SLA-aware routing, where traffic with low
latency tolerance (such as video analytics, data from PLC, and RFID systems) is directed through
channels with the lowest RTT (Round-Trip Time) and minimal packet loss. Meanwhile, less critical
traffic (such as telemetry for archiving) can be rerouted through channels with higher latency but
greater bandwidth (fig. 3).

Low-latency, Higher latency,
low packet loss greater bandwidth
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Figure 3. SD-WAN architecture with SLA-aware routing

In addition, the edge infrastructure includes mechanisms such as link redundancy, local
breakout, and policy-based forwarding, which are critical in industrial scenarios with high downtime
costs. This network architecture not only ensures low data transmission latency but also provides
resilience against network degradation or individual link failures, maintaining production continuity
and minimizing the risks of disrupting technological cycles.

Technology stack and interaction protocols in edge systems

Containerization and the choice of operating environment are critical in designing edge
solutions, as they affect platform stability, scalability, and maintainability. Edge systems typically
run on resource-constrained devices, requiring isolated applications with centralized control and
secure updates. Lightweight operating systems like Yocto Linux, Ubuntu Core, and BalenaOS,
combined with container tools such as Docker and containerd, support efficient, portable
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deployments. Orchestration solutions like K3s, MicroK8s, and Portainer enable low-overhead,
autonomous edge operations. While containerization ensures modularity and application isolation, it
does not fully address lifecycle management, configuration, or system integration. Therefore, an
additional runtime layer is needed to handle I/O interaction, event processing, synchronization with
central systems, and secure device management.

For example, Azure IoT Edge Runtime is a modular runtime environment that enables
running Docker containers directly on edge devices. It is integrated with Azure IoT Hub and supports
the deployment of both custom logic and built-in modules, including a message router (Edge Hub),
modules for streaming analytics, and machine learning models based on ONNX or TensorFlow. Edge
Runtime ensures automatic module updates, configuration management, and bidirectional
synchronization with the cloud.

Another example is AWS Greengrass Core, which offers local execution of AWS Lambda
functions, stream processing support, data caching, and offline operation with subsequent
synchronization. Within the Greengrass Group, edge devices can exchange messages via a local bus,
use MQTT, and perform data transformation before sending it to AWS IoT Core. Special attention is
given to security, utilizing X.509 authentication, function isolation, and IAM policies.

The messaging between components of the edge architecture plays a crucial role in ensuring
data consistency, service manageability, and system resilience in conditions of unstable
networks [5]. In the edge environment, priority is given to lightweight and event-driven protocols that
can operate with intermittent connectivity and support QoS mechanisms (table 2).

Table 2
Comparison of message exchange protocols in edge architectures [6, 7]

Protocol Core model QoS / reliability Typical applications

MQTT Publish/subscribe Three-level QoS (0, 1, 2); | IoT devices, sensors, edge
resilient to failures. gateways.

OPC-UA | Client/server + | Session support, | SCADA, industrial controllers,

pub/sub addressability, built-in PKI. | MES.

REST Request/response | No QoS, sensitive to latency | API calls, cloud synchronization.
and disruptions.

AMQP | Message queue Delivery confirmation, | Telemetry, corporate data buses.
queues, reliable connection.

The choice of data transfer protocol in the edge architecture is determined not only by the
characteristics of the network infrastructure but also by the requirements for delivery reliability, the
volume of transmitted information, and the type of interacting components. In addition to ensuring
reliable data delivery, edge platforms must have the ability to perform local analytics and
autonomously respond to events — this requires the inclusion of data processing modules and support
for ML inference at the edge.

Event processing on the edge node includes data preprocessing (aggregation, filtering, metric
calculation), implementation of business rules, and, if necessary, local decision-making without cloud
interaction. Containerized microservices, streaming analytics modules (such as Azure Stream
Analytics, Apache Edgent), and ML inference using optimized engines — ONNX Runtime,
TensorFlow Lite, OpenVINO — are used to execute models on CPU, GPU, and VPU. In scenarios
with high event density, CEP frameworks such as Esper or Apache Flink (in an edge configuration)
are employed to detect correlations and respond to complex sequences. When network connectivity
is restored, data is synchronized with the central platform through REST, gRPC, or message brokers,
considering QoS and retransmission logic, ensuring data consistency and integrity across the system.

In distributed architectures with autonomous edge nodes, security and access control are
essential [8]. Communication is secured using mTLS and X.509 certificates, ensuring mutual
authentication and data protection. Device identity and onboarding are managed via hardware-based
TPM and services like Azure DPS or AWS IoT Device Defender, enabling centralized certificate and
policy control. Access to services and data is regulated through RBAC, with permissions set at node,
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container, or API levels. Additionally, context-aware policies (e.g., geolocation, time, device type)
enhance flexible and reliable access control in dynamic, distributed edge environments.

Thus, the technology stack of edge systems covers all levels — from the operating system and
container environment to high-level analytics and access control — providing a fully functional and
secure implementation of edge computing.

Advantages of using edge computing

Integrating edge computing into production chains significantly reduces information
processing delays, increases the autonomy of control nodes, and ensures resilience to network
infrastructure failures. This is especially crucial for highly automated enterprises. For example,
Amazon uses edge computing in its warehouse operations for real-time data processing and inventory
management. The company has implemented real-time tracking systems, enabling quick responses to
demand changes and optimizing stock levels, thus reducing stockouts and improving inventory
accuracy. Additionally, edge computing processes data directly at warehouses, speeding up decision-
making and enhancing operational efficiency.

In the aerospace industry, companies also implement edge computing to optimize production
and inventory management. For instance, Boeing uses edge computing to monitor equipment status
and streamline manufacturing processes. This technology improves system autonomy, reduces
dependence on cloud services, optimizes inventory management, and enables faster reactions to
production changes, all critical for aerospace's high precision and reliability demands.

In aerospace edge infrastructure also provides a reliable platform for local monitoring. For
example, an edge node on the assembly line processes data from RFID tags at each workstation. If
the assembly sequence is incorrect or a required part is missing, the system can halt the process or
alert the central quality system.

Overall, managing inventory at the workshop and warehouse levels is a key application of the
edge approach. Using edge devices with connected sensors (RFID, IoT tags, scales, cameras),
material movement, status, and availability can be tracked without relying on the cloud.

The integration of edge layers with industrial information systems occurs through API and
industrial protocols. ERP systems (e.g., SAP, 1C: ERP), APS (Advanced Planning & Scheduling),
and SCADA interact with edge nodes via REST/gRPC interfaces or message brokers (MQTT,
AMQP). In practice, edge devices transmit aggregated metadata, preprocessing results, or event
signals. SCADA systems use this data for visualization and real-time control, while ERP systems
make strategic decisions, including procurement and logistics. Combining edge with APS, for
example, allows dynamic production schedule adjustments based on real equipment status and local
warehouse material availability.

Thus, using edge computing in production chains not only reduces the load on central
resources and improves operational resilience but also enables flexible, locally adapted management
scenarios for production, inventory, and quality in the context of digital industrial enterprises.

Conclusion

The evolution of web architectures demonstrates a systemic shift from centralized, rigid
solutions to distributed, cloud-based, and ultimately edge-oriented models capable of effectively
addressing the challenges of modern industrial digitalization. Integrating edge computing into the
information layers of production, inventory, and supply chain management enables not only reduced
data processing latency and increased network resilience, but also the implementation of localized
analytics and autonomous decision-making. The architectural principles of edge infrastructures —
combining containerization, lightweight communication protocols, and secure interaction with
enterprise systems — form the technical foundation for high-tech industries, where process continuity
and operational precision are critical. Thus, the transition to edge models represents not merely a
technological evolution, but a paradigm shift in the design of industrial IT systems.
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Abstract

This article investigates the application of quantum algorithms in the domain of big data
analysis, focusing on their theoretical foundations, architectural integration, and sector-specific use
cases. The study provides a comparative assessment of classical and quantum approaches to core
analytic tasks such as search, optimization, and dimensionality reduction. Key attention is given to
hybrid quantum—classical models, implementation challenges, system security, and operational
reliability. The article concludes with an overview of current limitations and outlines prospective
research directions that can guide the practical deployment of quantum-enhanced analytics in large-
scale data environments.

Keywords: quantum algorithms, big data, hybrid computing, optimization, quantum search,
security, scalability, quantum analytics.

AHHOTAIHUA

Crarbsl MOCBSIIEHA NPUMEHEHHMIO KBAaHTOBBIX AJITOPUTMOB B OOJNACTH aHamu3a OOJIBIIMX
JAHHBIX, C aKIIECHTOM Ha TEOPETHUYECKUE OCHOBBI, APXUTEKTYPHBIE TIOAXO/IbI U OTPACIEBHIC IPHUMEPHI
ucnonb3oBanus. [IpoBeseHo cpaBHUTEIBHOE PACCMOTPEHUE KIIACCUUYECKUX M KBAHTOBBIX METOZIOB B
3ajja4ax TIOMCKa, ONTHUMHU3AIMM W CHIKEHHA pa3sMepHOcTH. Oco0oe BHUMaHHE YHEISIeTCs
THOpPUIHBIM apXHUTEKTypaM, MpoOjeMaM BHEIPEHHs, BOMpOcaM O€30MacHOCTH M HaJEKHOCTU
BbIUMCIICHUH. B 3aBepiueHne 0003HAYEHBI TEKYIIME OTPAaHMYCHHMS M HANpaBlICHHUsS AalbHEHIINX
UCCIICIOBAaHUN, HAalpaBliCHHbIE HAa WHTETPAlMI0 KBAHTOBBIX pEIICHHH B MacIITabupyemble
AHATUTUYECKUE CUCTEMBI.

KiroueBble cji0Ba: KBAaHTOBBIE AITOPUTMBI, OONbBIINE JaHHBIC, THOPUIAHBIC BBIUYUCICHHUS,
ONITUMU3AINS, KBAHTOBBIN MOUCK, 6€30MaCHOCTh, MACIITA0MPYEMOCTh, KBAHTOBAsI aHAIUTHKA.

Introduction

The exponential growth of data generated across digital ecosystems has rendered traditional
computational paradigms increasingly insufficient for efficient large-scale data analysis. As datasets
expand in volume, velocity, and variety, classical algorithms face fundamental limitations related to
memory bandwidth, processing power, and algorithmic complexity. These challenges have prompted
exploration into novel computational models capable of handling such loads with greater efficiency.
Among these, quantum computing has emerged as a promising frontier, offering algorithmic
speedups for specific classes of problems through principles of superposition and entanglement.

Quantum algorithms, in particular, exhibit notable potential in the domain of big data analytics,
where problems often involve searching, clustering, classification, and optimization. Algorithms such
as Grover’s search, quantum Fourier transform (QFT), and quantum principal component analysis
(QPCA) offer theoretical advantages over their classical counterparts, especially for high-
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dimensional datasets. Their applicability ranges from accelerating search operations in unstructured
data to enabling quantum-enhanced machine learning models. As quantum hardware continues to
evolve, these algorithms are increasingly moving from theoretical constructs toward implementable
solutions in hybrid classical-quantum architectures.

The objective of this study is to analyze the potential and limitations of applying quantum
algorithms in big data analysis, focusing on their theoretical advantages, current implementations,
and practical integration into existing data processing workflows. Special attention is given to the
comparative efficiency of quantum versus classical approaches, the suitability of quantum algorithms
for various analytic tasks, and the constraints imposed by contemporary quantum hardware. The study
aims to provide a structured perspective on how quantum computing can contribute to the
transformation of large-scale data analytics.

Main part

Comparative characteristics of quantum and classical algorithms in big data tasks

The application of quantum algorithms in the field of big data analysis has prompted a growing
interest in their comparative performance relative to classical approaches. While quantum computing
remains in its early stages of physical realization, several algorithms have demonstrated theoretical
speedups that could transform the handling of high-dimensional, complex datasets. The selection of
algorithmic strategies depends not only on asymptotic performance but also on the structure of the
data, the type of task, and the nature of the available quantum hardware [1].

Table 1 provides a comparative overview of several common big data tasks, juxtaposing
classical and quantum algorithmic approaches, along with their expected computational advantages.
The tasks include unstructured search, matrix operations, dimensionality reduction, combinatorial
optimization, and clustering-all of which are core components of modern data analytics pipelines.

Table 1
Comparison of classical and quantum algorithms for key big data tasks
Task Classical algorithm Quantum algorithm Expected speedup

Unstructured Linear search (O(n)) Grover's Algorithm (O(Vn)) Quadratic
search
Matrix Strassen / Coppersmith- | Quantum Matrix Multiplication | Polylogarithmic (in
multiplication Winograd (QMM) theory)
Principal SVD / Eigen |Quantum PCA (QPCA) Exponential (under
component decomposition assumptions)
analysis
Optimization Simulated annealing /|Quantum Approximate | Polynomial
(QUBO) Gradient descent Optimization Algorithm | (problem-

(QAO0A) dependent)
Clustering k-means / DBSCAN Quantum k-means / VQE |Quadratic

clustering

The results indicate that for specific tasks such as unstructured search, Grover’s algorithm offers
a proven quadratic speedup, which may be leveraged in contexts such as large database querying or
anomaly detection. In optimization problems, particularly those reducible to QUBO (Quadratic
Unconstrained Binary Optimization), quantum algorithms like QAOA (Quantum Approximate
Optimization Algorithm) provide promising approximations under constrained execution
environments.

Dimensionality reduction techniques such as QPCA could significantly outperform classical
singular value decomposition (SVD), particularly for massive, sparse matrices. However, these
theoretical advantages are conditional on assumptions such as coherent quantum access to the data
and sufficiently low noise levels. Moreover, quantum implementations of clustering algorithms
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remain in exploratory phases, although initial prototypes (e.g., quantum k-means) show performance
improvements in reduced search space exploration.

In summary, while quantum algorithms hold transformative potential in specific computational
domains, their integration into big data workflows requires critical consideration of algorithmic
maturity, quantum hardware limitations, and data encoding schemes suitable for quantum processing
[2].

Architectural models for hybrid quantum-—classical data processing

Given the current limitations in quantum hardware, particularly regarding qubit stability and
system scale, fully quantum data analysis pipelines remain infeasible for most real-world
applications. As a result, hybrid quantum—classical architectures have emerged as a transitional
solution, combining the strengths of quantum algorithms with the flexibility and maturity of classical
computing. These architectures enable practical experimentation with quantum processing while
preserving system-level reliability and scalability.

Hybrid systems typically partition the data analytics workflow into quantum-suitable and
classical components. For example, a quantum algorithm may be used for the core computational
bottleneck-such as searching or optimization-while data preparation, I/O operations, and final
interpretation are managed by classical systems. This division allows organizations to exploit
potential quantum speedups without complete migration to quantum infrastructure [3].

Table 2 outlines five architectural patterns commonly adopted in hybrid quantum-classical
systems. Each model is characterized by its operational structure, core purpose, and representative
use cases across big data domains.

Table 2
Hybrid architectures for quantum—classical big data integration
Architecture type Description Use cases
Sequential hybrid |Classical system prepares data and handles output, | Grover-enhanced search
quantum algorithm performs core computation.  |in pre-indexed datasets
Parallel hybrid Classical and quantum  systems  work|Hybrid neural network
simultaneously on different components of the|training
task.
Quantum Quantum system performs data encoding or feature | Quantum-enhanced
preprocessing transformation before classical analytics. feature extraction
Quantum Quantum algorithm refines results of prior|Post-classical clustering
postprocessing classical analysis (e.g., optimization). refinement
Federated quantum | Multiple quantum nodes integrate into a federated | Secure collaborative
integration big data pipeline with distributed learning. learning across
institutions

The sequential hybrid model remains the most accessible, with data preprocessed and
postprocessed classically, while the quantum component solves the algorithmic core. This approach
is particularly useful for unstructured search and combinatorial problems. In contrast, parallel hybrid
models distribute tasks concurrently between quantum and classical systems-such as during hybrid
neural network training or reinforcement learning scenarios.

Quantum preprocessing and postprocessing strategies target specific segments of the pipeline
to amplify performance, including early-stage feature extraction or late-stage result refinement.
Finally, the federated quantum integration model introduces a distributed layer where multiple
quantum nodes participate in collaborative analysis-an approach increasingly relevant for secure
multi-institution data environments.

These architectural designs reflect a growing maturity in quantum-classical orchestration and
indicate viable directions for integrating quantum computing into enterprise-level big data platforms

[4].
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Challenges and constraints in applying quantum algorithms to big data analysis

Despite their theoretical advantages, quantum algorithms face a range of practical limitations
that must be addressed before they can be reliably integrated into big data pipelines. These challenges
span across hardware maturity, data representation, algorithm stability, and interoperability with
classical systems [5].

One of the most critical constraints is quantum hardware scalability. Current quantum
processors are limited in terms of the number of available qubits and the fidelity of quantum gates.
For quantum algorithms to outperform classical alternatives on meaningful big data tasks, a
significant number of fault-tolerant qubits is required. However, as of now, noisy intermediate-scale
quantum (NISQ) devices dominate the landscape, capable of executing only shallow circuits with
limited tolerance to decoherence and gate errors.

Another major barrier is quantum data loading, often referred to as the «QRAM bottleneck».
For most quantum algorithms to process classical data, that data must first be encoded into a quantum
state-an operation that can be costly or even classically inefficient [6]. In the context of big data,
where datasets often reach terabyte scale, the question of how to efficiently transform and load
structured or unstructured data into quantum memory remains largely unsolved.

Algorithmic fragility is also a concern. Quantum algorithms such as QPCA or QAOA are
sensitive to noise, hyperparameter tuning, and circuit depth. Unlike classical algorithms that degrade
gracefully with increased noise or data complexity, quantum models often fail catastrophically
beyond a certain threshold of uncertainty or decoherence. This raises questions about their robustness
and suitability for use in mission-critical analytics systems.

Furthermore, interoperability with classical infrastructure is far from trivial. Big data
environments typically rely on established tools like Hadoop, Spark, or cloud-based SQL engines.
Embedding quantum computations into these pipelines requires the development of hybrid
orchestration layers, data exchange protocols, and quantum-aware middleware-components that are
currently in early development or available only as experimental prototypes [7].

In summary, while quantum algorithms present transformative potential for big data analysis,
their practical adoption is gated by significant technical and architectural challenges. Addressing
these constraints will require advances not only in quantum hardware, but also in algorithm design,
software engineering, and systems integration.

Industry-specific use cases of quantum algorithms in big data analytics

The potential of quantum algorithms extends beyond theoretical acceleration, offering practical
applications across multiple sectors that depend heavily on large-scale data processing [8]. While
real-world deployments remain in their early stages, numerous pilot studies and research
collaborations indicate that quantum-enhanced analytics could reshape decision-making, pattern
discovery, and optimization in data-intensive industries.

Table 3 presents selected industry use cases in which quantum algorithms are being evaluated
or actively researched to augment classical big data workflows [9]. These examples cover critical
sectors such as finance, healthcare, telecommunications, energy, and logistics.

Table 3
Industry-specific use cases of quantum algorithms in big data analysis
Industry Big data task Quantum approach Expected impact
Finance Portfolio QAOA  for  portfolio|Faster decision-making
optimization, fraud|optimization; Grover for|under uncertainty
detection anomaly search
Healthcare Genomic data | Quantum machine learning | Improved  diagnostic
analysis, patient risk|for pattern discovery accuracy and
profiling personalization
Industry Big data task Quantum approach Expected impact
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Telecommunications | Network traffic| Quantum neural networks | Higher bandwidth
prediction, anomaly |for traffic flow modeling |efficiency and threat
detection mitigation

Energy Grid stability | Quantum PCA for| Enhanced energy
analysis, predictive |dimensionality reduction |distribution and fault
maintenance detection

Logistics Route optimization,|Quantum annealing for|Reduced costs and real-
demand forecasting |routing and  logistics |time logistics planning

optimization

In finance, QAOA are investigated for high-dimensional portfolio management, where classical
methods struggle with combinatorial complexity. Likewise, Grover’s algorithm has been proposed
for real-time fraud detection within unstructured transaction logs.

The healthcare sector benefits from quantum machine learning techniques applied to genomic
sequencing and patient risk profiling. Quantum-enhanced pattern recognition may accelerate
biomarker discovery and enable more accurate disease classification from massive clinical datasets.

In telecommunications, the use of quantum neural networks has been proposed for modeling
traffic flows, predicting network congestion, and detecting anomalous behavior in packet-level data
[10]. These approaches aim to improve bandwidth allocation and reduce service interruptions in
complex network topologies.

Energy systems rely heavily on forecasting and optimization QPCA is applied to compress grid
sensor data while maintaining predictive accuracy. In parallel, quantum algorithms for predictive
maintenance help identify fault conditions in turbines and substations before costly failures occur.

Finally, logistics and supply chain operations explore quantum annealing and routing
algorithms to optimize delivery routes, schedule fleets, and anticipate fluctuations in demand with
greater computational efficiency than classical solvers.

These emerging use cases suggest that quantum algorithms are not merely experimental
curiosities but practical tools with transformative potential-especially when embedded within hybrid
architectures that complement existing analytics platforms [11].

Future directions and research outlook

As quantum hardware and software ecosystems evolve, new opportunities are emerging for
integrating quantum algorithms into scalable big data architectures. One promising direction involves
the co-design of quantum algorithms and classical infrastructure to minimize communication
overhead and leverage specialized hardware accelerators. Future systems are expected to blend
quantum co-processors with edge computing nodes and high-performance clusters, enabling real-time
quantum-enhanced analytics in distributed environments.

Another active area of research focuses on quantum data representation and encoding strategies.
Efficient methods for mapping classical datasets into quantum states-without incurring exponential
costs-remain a prerequisite for any practical deployment. Techniques such as amplitude encoding,
basis embedding, and variational circuits are currently being refined to support this transition, with
particular emphasis on sparse and high-dimensional datasets common in industrial settings.

Moreover, the development of standardized benchmarks for performance evaluation is
essential. While theoretical speedups are widely cited, empirical validation on near-term hardware is
limited [12]. Establishing common metrics and datasets for comparing classical and quantum models
across diverse analytics tasks will improve reproducibility and foster trust in experimental outcomes.

Privacy-preserving computation is also gaining traction, especially in sectors where sensitive
data prohibits centralized processing. Quantum-secured federated learning, homomorphic encryption
integration, and post-quantum cryptographic resilience are likely to converge with data analytics
pipelines, creating hybrid protocols that balance performance and confidentiality.

Finally, interdisciplinary collaboration will be critical to realize the full potential of quantum
data analysis. Researchers in quantum information science, distributed systems, software engineering,
and applied machine learning must work in tandem to bridge theoretical advances with engineering
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feasibility. As quantum computing moves from lab-scale prototypes to enterprise adoption, these
collaborative frameworks will guide the responsible and effective deployment of quantum-enhanced
big data solutions.

Security and reliability in quantum big data pipelines

As quantum computing capabilities expand, ensuring the security and reliability of quantum-
enhanced big data systems becomes a central concern. The unique characteristics of quantum
algorithms-such as reversibility, entanglement-based correlations, and probabilistic outputs-introduce
new classes of vulnerabilities that must be addressed through both architectural safeguards and
algorithmic hardening.

A key issue lies in the opacity of quantum model behavior. Many quantum algorithms produce
outcomes that are statistically sampled from a probability distribution, making deterministic
interpretation and reproducibility more difficult. In critical applications such as fraud detection or
medical diagnostics, the inability to consistently trace the reasoning behind a quantum decision may
undermine trust and compliance with regulatory frameworks.

Another challenge is model exposure in hybrid pipelines. Quantum circuits, especially those
deployed via cloud-based quantum platforms, may become targets of reverse engineering or
extraction attacks. Just as classical models can be cloned or adversarially probed through APIs,
quantum models are theoretically susceptible to similar threats-particularly when measurement data
or circuit structure is leaked. This risk is amplified in distributed pipelines where quantum
components are repeatedly queried or invoked via orchestration frameworks.

From an infrastructure perspective, error propagation in quantum computation poses significant
reliability risks. Unlike classical faults, quantum errors can cascade non-linearly due to entangled
states and superposition, potentially contaminating results across dependent subsystems. Without
robust error correction, which remains experimentally challenging, systems may produce degraded
analytics outputs without immediate detection.

To mitigate these concerns, several defensive strategies are emerging. Quantum circuit
obfuscation, encrypted execution environments, and differentially private measurement protocols
offer partial protection against model misuse. In parallel, hardware-level solutions-such as isolated
quantum memory and authenticated access control-are being developed to secure quantum processing
units in multi-tenant cloud infrastructures [13].

In terms of reliability, efforts are underway to design redundant hybrid configurations, in which
classical subroutines validate or cross-check the outputs of quantum modules. This layered
architecture not only provides failover capabilities but also introduces audit trails and confidence
scoring mechanisms, which are essential in risk-sensitive analytics pipelines.

Ultimately, as quantum components are introduced into big data environments, security and
reliability must be treated as first-class architectural principles-embedded into every layer of the
analytic workflow, from data ingestion to inference.

Conclusion

The application of quantum algorithms to big data analysis marks a critical juncture in the
evolution of computational science. By leveraging the unique capabilities of quantum systems-such
as superposition, entanglement, and probabilistic inference-it becomes possible to address analytic
tasks that exceed the practical limits of classical computing. Search, optimization, dimensionality
reduction, and pattern recognition are among the domains where quantum methods demonstrate
theoretical speedups and architectural advantages.

This study has examined the comparative performance of classical and quantum approaches
across core big data tasks, proposed practical hybrid architectures for implementation, and analyzed
current barriers including data loading, noise sensitivity, and interoperability. Furthermore, it has
outlined potential industry use cases, emphasized security and reliability concerns, and highlighted
areas for continued research.

While full-scale adoption of quantum-enhanced analytics remains dependent on further
advancements in hardware stability, data encoding schemes, and ecosystem maturity, early integration
into hybrid workflows has already begun. Quantum algorithms should no longer be regarded solely
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as future theoretical constructs, but as emerging tools that-when properly applied-can contribute to
the scalability, efficiency, and intelligence of modern big data systems.
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AHHOTAIHUSA

[udpoBast MAEHTHUYHOCTb, OCHOBAaHHAs HAa TEXHOJOTHAX pacmpenenéHHsix peectpoB (DLT),
CTaHOBUTCS (DyHIAMEHTOM JJIS IIOCTPOSHHSI TOBEPEHHBIX e-government-CHCTEM HOBOTO MOKOJICHHUS.
D¢ dexTuBHOE BHEApPEHHE TAaKUX pEUICHUH TpeOyeT ydéra apXUTEKTYpHBIX, HOPMAaTHBHBIX W
UHPPACTPYKTYPHBIX (PakTopoB. [IpoBeaéH cCpaBHUTENbHBIN aHATN3 3PEIOCTH BHEAPEHUS HHU(POBBIX
YAOCTOBEPEHUN JINYHOCTH B MEKIYHAPOAHOW NPAKTHUKE, a TAKKE TEXHHMUECKHX XapaKTEPUCTHUK
kmoueBblx DLT-mmargopm. O60cHOBaHA 3HAYMMOCTh caMoympaBisieMoil naeHTuaHocTH (SSI) kak
ME€XaHN3Ma IOBBIIIEHNUS IPUBAaTHOCTH M IOJIb30BaTENbCKOro KOHTposs. IlpemnoxeH moaxom K
BBIOOPY TEXHOJOTMUYECKON apXMTEKTYPbl, YUUTHIBAIOUINHA OallaHC MEXIy MPOU3BOAUTEIBHOCTHIO,
HOPMAaTHUBHON COBMECTHUMOCTBIO U TPpeOOBaHUSIMHU K MaciiTabupyeMocTu. IlomydyeHHbie pe3yabTraTsl
MOTYT OBbITh UCTIOJIb30BaHbI P pa3padOTKe HAIMOHAIBHBIX cTpareruil udpoBoii Tpanchopmariym.

KiaroueBble cjoBa: mudposas wumeHtuanoctb, DLT, SSI, e-government, Omox4eiiH,
MacCIITaOuPyeMOCTh, apXUTEKTypa, MPUBATHOCTb.

Abstract

Digital identity built on distributed ledger technologies (DLT) is emerging as a foundational
component of next-generation e-government infrastructures. Successful implementation depends on
a combination of architectural design, regulatory frameworks, and technical interoperability. This
paper presents a comparative assessment of global maturity levels in DLT-based identity systems and
evaluates core platform characteristics. The relevance of self-sovereign identity (SSI) is emphasized
as a means to enhance user control and privacy. A methodological approach is proposed for selecting
technological architectures that align performance, scalability, and compliance objectives. The
findings provide practical guidance for national digital transformation strategies and public sector
implementation.

Keywords: digital identity, DLT, SSI, e-government, blockchain, architecture, scalability,
privacy.
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Brenenue

CoBpemenHble 1U(pPOBbIE TpaHCHOPMALUU B TOCYAAPCTBEHHOM YIPAaBIECHUH OOYCIIOBIICHBI
HEOO0XOIMMOCTBIO MOBBIIICHUS TPO3PAYHOCTH, FP(PEKTUBHOCTH U JTOBEPHUS B OTHOLICHUAX MEXIY
rpaxaaHaMmu, OM3HECOM U rocyaapcTBoM. OIHUM M3 KIIOYEBBIX 3JIEMEHTOB THX MPeoOpa3oBaHUN
CTaHOBHUTCS pa3BUTHE 3JCKTPOHHOTO IPaBUTEILCTBA (e-government), OPUEHTHPOBAHHOTO Ha
aBTOMATH3alMI0 AJMHHHUCTPATUBHBIX IPOLIECCOB, IU(PPOBU3AIMIO CEPBUCOB U HHTETPALIUIO
pacrnpeie€HHBIX HH)OPMAIIMOHHBIX CUCTEM.

BaxHeWmyM  KOMIIOHEHTOM  e-government-uHGpacTpyKTypbl — BBICTyHaer  Iudpoas
UJCHTUYHOCTh - COBOKYITHOCTh YHUKAJIBHBIX IH(POBBIX MPHU3HAKOB, MO3BOJISIOMUX OJHO3HAYHO
UACHTUPUIMPOBATE CyObEeKTa B BHUPTyaJdbHOM cpene. be3zomacHocTh, YCTOHYMBOCTH U
yIpaBIIeMOCTh HU(PPOBBIX HWACHTUYHOCTEH HANPSMYIO BIMAIOT HAa KaueCTBO IPEIOCTaBISIEMbIX
rOCYJapCTBEHHBIX YCIYT, BKIIOYas PErucTPaluio TpaxaaH, JJOCTYH K MEIUIMHCKAM U
o0pa3oBaTeNbHBIM CHUCTEMaM, y4yacTHE B BBIOOpax W paclpe/ielieHHe COLMANbHBIX BbIMIAT. B
YCIOBHUAX PpACTYIIMX YIpO3 TMPHUBATHOCTH U (QalbCUPHUKAIMKU TaHHBIX 0co00e 3Ha4YeHHE
nproOpeTaroT MOAXO0/bl, OCHOBAaHHBIE Ha pacnpenenéHHbIX peectpax (distributed ledgers), B Tom
YHCcIIe HAa TEXHOJIOTUU OJIOKUEHH.

Lenb naHHOH CTATHU - MPOAHAIN3UPOBATH NOTEHIIMAT HHTErpalii HU(POBOM HACHTUIHOCTH
C pacmpenenéHHBIMU PeecTpaMH B paMKax e-government-cucreM. PaccMaTpuBaroTcsi TEXHUYECKHE,
NPaBOBbIE M OpPraHU3ALMOHHBIC ACIHEKTHl BHEIPEHUS pacHpeAeiEHHbIX HIASHTH()HUKAIMOHHBIX
MoOJIeNiel, OIICHMBAIOTCS TPEUMYIIECTBA M OTPaHMYCHHS TMOJXO0/Aa, a TakXkKe IpeliaracTcs
KOHIICTITyaJIbHAas MOJETb apXUTEKTYyphl TOCYJAapCTBEHHONW CHUCTEMBbI IU(PPOBON HIACHTU(DUKAIIH,
OCHOBAHHOM Ha JICIICHTPATU30BAHHBIX TEXHOIOTHSX.

OcHoOBHasi 4acTb. JBOJIONUS HU(PPOBONi HAEHTUYHOCTH B KOHTEKCTE 3JIeKTPOHHOIO
rocyiapcraa

PazBurtue AIIEKTPOHHOTO MIPAaBUTEJILCTBA COITPOBOX/1AJIOCh MOCIIEIOBATEIbHOM
Tpanchopmanmer Moaenell uaAeHTHPHUKALUU Tojib3oBaTeneil. Ha panHux sranmax mudpoBU3aLUH
OCHOBHO€ BHUMAaHME YACSUIOCH LEHTPATU30BAHHBIM CHUCTEMaM ayTeHTH(HKALUU, B KOTOPBIX
rOCY/IapCTBEHHBIE OpTaHbl UM JJOBEPEHHBIEC IPOBANEPHI YAOCTOBEPSUTH JIMYHOCTD MOJIH30BATENs Ha
OCHOBE TPAJAMLIMOHHBIX JOKYMEHTOB M 3aKphIThIX peecTpoB [1]. Takue moaxoasl obOecreunBann
0a30BbIi YPOBEHb HAaJIEKHOCTH, OTHAKO OCTABAIUCH YI3BUMBIMU K YTE€UKaM JAHHBIX, TEXHUUECKUM
cOO0sIM U OTpaHUYEHUSIM MaCIITaOMPYEMOCTH.

C mepexomoMm Kk Oonee 3penbiM e-government-rmiar¢opMaM BO3HHMKIIA HEOOXOAMMOCTH B
CO3JJaHUU CAMOCTOSITENIbHBIX U THOKO yIpaBlIIeMbIX HU(POBBIX HACHTUIHOCTEH, KOTOPbIe MOTJIN OBl
UCTIOJIb30BaThCsl TIOBTOPHO B PA3IMYHBIX aJIMUHUCTPATUBHBIX M MEXKBEIOMCTBEHHBIX CLEHApPUSX.
3TO IPUBENO K PaCHPOCTPAHEHHIO Mojienel eiepaTUBHON HIeHTH(PUKALNHU, B KOTOPBIX HECKOJIBKO
BEJIOMCTB MJIM CEPBUCOB NMPHU3HAIOT OIHY M TY k€ HU(PPOBYIO CyITHOCTh. OTHAKO U TaKUe PELICHUs
COXPaHSIOT 3aBUCHUMOCTb OT IIEHTPAJIBHBIX PETUCTPATOPOB U HE YCTPAHSIOT PHCKH, CBSI3aHHBIC C
eIMHBIM IICHTPOM OTKa3a.

CoBpeMeHHbIE KOHLENIMHA HHU(POBOH HACHTUYHOCTH BCE dalle OPUEHTHPOBAHBI Ha
JCLIEHTPAJIM30BaHHbIE M  TIOJIb30BATEIbCKO-OPUEHTUPOBAaHHBIE  Monenu. [Ipumepom  Takoi
napaJurmMbl BBICTYIIAET KOHLIEIIHMS caMOoyTpaBiisieMol uaeHTuaHocTH (self-sovereign identity, SSI),
COIVIACHO KOTOPOW CYOBEKT caM KOHTPOJIMpPYET AOCTYNl K CBOMM JaHHBIM, a UX BepH(pHKaLus
OCYILIECTBIIICTCS 4Yepe3 pacHpeieiEHHbIE peecTphl C HCIOJIB30BAHUEM KPHUITOrpaduyecKux
MexaHu3MOB J1oBepusi. B pamkax SSI noBepue cTpoutcs He HAa UHGPACTPYKTYpE HEHTPAIN30BaHHBIX
YAOCTOBEPSIOIIUX IIEHTPOB, @ HA CETEBOM KOHCEHCYCe M LU(POBBIX MOIMUCAX, 3AMCHIBAEMBIX B
HEU3MEHseMble OJIOKH JaHHBIX.

Takum oOpa3zom, 3BosoLUs TUPPOBON UACHTUYHOCTH B e-government-cpesie JEeMOHCTPUPYET
nepexof] OT LEHTPAIM30BAaHHOTO YIPABICHUS K PacHpeAeTEHHBIM M CyBEpEHHBIM MOJEISAM, TIe
0€301acHOCTb, MPUBATHOCTh U TPO3PAUYHOCTH OINPENENAIOTCS APXUTEKTYPHBIMH OCOOCHHOCTAMU
U(PPOBON IKOCUCTEMBI, @ HE UCKJIIOUUTEIBHO HHCTUTYIIMOHALHBIM I0BEPUEM.
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ApXHTeKTypHBbIe MOJeJ I HH(PPOBOH HICHTHYHOCTH B e-government-cpene

Bri6op apxutekrypsl Hu(ppOBONH HWACHTUYHOCTH B CHUCTEMax 3JIEKTPOHHOTO MPaBUTEIILCTBA
IIPEONPEACIAET HE TOJNBKO TEXHOJIOTMYECKYIO pealM3alliio, HO W HOPMATUBHBIE ACHEKTHI
B3aMMOZAEHCTBUS MEXKY T'OCYIapCTBOM, TPakJaHUHOM U CTOPOHHUMMU cepBrcaMi [2]. CoBpeMeHHbIE
MOAXOAbl K IPOEKTHUPOBAHUIO TAKUX CHUCTEM MOXHO YCIOBHO DAa3l€IUThb HAa TPU KaTErOpHUHU:
LIEHTpaIN30BaHHas, (peiepaTuBHAs U ICLEHTPATU30BaHHAS (Ha OCHOBE pacHpeeIEHHBIX PEECTPOB).

[lenTpann3oBaHHas apXUTEKTypa MPEAIOIaracT HaJIuuue eIMHOTO yAO0CTOBEPSIOIIETO OpraHa,
OTBEUAIOIIETO 3a PErHCTPalNio, XpaHEHUEe U BepHU(PHUKALUIO HICHTU()UKAMOHHBIX JaHHBIX. DTOT
MOAXO/ IIMPOKO TMPUMEHSJICS Ha paHHMX 3Tanax HU(POBU3ALMH, HO XapaKTEPU3yeTCs BBICOKOU
YSI3BUMOCTBIO K aTakaM, a TaKXKe PUCKaMU 3JI0yHOTPEOICHHS TOTHOMOYHSMHU.

denepaTuBHBIE MOJICTTH MO3BOJISIOT OOBEIUHATh HECKOIBKO MMOCTABIIUKOB YIOCTOBEPSIONINX
yCIyr B paMKax JOBEpeHHOW ceTd. Bepudukaiuss MOXeT OCYIIECTBIATHCS C HCIOIb30BaHHUEM
MIPOTOKOJIOB, TakuX Kak SAML unu OAuth2, npu 3TOM JaHHBIE TOJIB30BATENs MOTYT IUPKYJIMPOBATh
MEXIy pa3lIWYHbIMH BeoMcTBaMU. HecMoTpsi Ha Oojee BBICOKYIO THOKOCTH, (heaepaTuBHBIC
perieHust BCE eé mojaraloTcs Ha IeHTPaIbHYI0 HHPPACTPYKTYpy U TPEOYyIOT CTPOTroil KOOpAUHAIINH
MEXy YYaCTHUKaMH.

JleleHTpaan30BaHHbIE apXUTEKTYpHl, pealu3yeMble Ha 0a3e paclpelneléHHBIX PEecTpOB,
NPUHIUINAIBGHO HM3MEHSIOT Mojenb jaoBepus. B cucreme SSI kaxaplii cyObeKT (rpa)kIaHHH,
OpraHu3aIysl, roCylIapCTBEHHOE YUPEKICHUE) MOXKET CO3/1aBaThb M YNPABIATH COOCTBEHHBIMU
UACHTU(PHUKATOPAMH, A TIPOBEPKHU MOATMHHOCTH OCYIIECTBISIOTCS Yepe3 HU(POBbIE J0KA3aTEeIbCTBA
U 3anucu B OnokueiiHe. Takue cHCTEMBI MOBBIMAIOT MPO3PAYHOCTh M YCTOHUMBOCTD, CHIDKAs
3aBUCHUMOCTb OT LIEHTPAJIN30BaHHBIX IOBEPEHHBIX CTOPOH.

Ha pucynke 1 mpenacraBneHa cpaBHHUTEIbHAs cxeMa TpEX apXUTEKTyp LU(GPOBOM
UJEHTUYHOCTH, IPUMEHSIEMBIX B €-government-cCTEMax.

LudpoBas | Cucrembl
UOEHTUYHOCTb e-government
- _ PacnpenenéHHble
bnokyenH | pea
peecTpbl |

Pucynoxk 1. CpaBHeHHE apXUTEKTYp UU(PPOBOH HACHTUYHOCTH: LIEHTPATU30BaHHasl, (enepaTUBHAS U
ACLCHTpAJIN30BaHHAs MOACIIb

CpaBHUTENBHBIN aHATU3 APXUTEKTYP HUPPOBON UIACHTUYHOCTH, IPEACTABICHHBIX HAa PUCYHKE,
JEMOHCTPHUPYET, UTO LIEHTPATIM30BAHHBIE MOJIEIIN, HECMOTPS Ha IPOCTOTY pealu3aliu, yCTyNaroT 110
YPOBHIO OTKa30yCTOMYMBOCTU U KOHTPOJIIO CO CTOPOHBI IoJib3oBarenei. deneparuBHble pelieHUs
obecrieunBaloT 0oJiee BBICOKHI YPOBEHb B3aMMOJCHCTBHS MEXAY BEIOMCTBAMH, HO COXPAaHSIOT
3aBHCUMOCTbH OT JIOBEpEHHBIX MOCpeaHuKoB. Hanbosee mepcrnekTUBHON B KOHTEKCTE LU(POBOTO
CYBEPEHHUTETA IPaX1aH U YCTOMUYUBOCTU MHQPPACTPYKTYPHI MPEACTABISETCA JELeHTPaIN30BaHHAS
MOJIeNb, peaju3yeMas C MCIIOJIb30BAHUEM pachpeAenéHHbIX peecTpoB. OHa oOecneynBaeT
HaMOOJIBIIYIO CTETIEHb TPO3PAYHOCTH, MACIITAOMPYEMOCTH U KpUNTOTpapruecKoi HaAEKHOCTH, YTO
0COOEHHO aKTyaJIbHO JUI COBPEMEHHBIX e-government-cucteM [3].
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CpaBHUTeIbHBIN aHATU3 pelieHn i nMppoBoii naeHTHPHKauun Ha 0ase DLT

Buenpenne texnonoruit pacnpeaenéunbix peectpos (Distributed Ledger Technology, DLT) B
TOCY/IapCTBEHHBIC HACHTU(UKAIIMOHHBIE CHUCTEMbI COINPOBOXKAAETCS POCTOM HMHTEpeca K
KOHKPETHBIM TEXHOJOrHMYecKuM Iardpopmam. Ha ceromHsmHuil IeHb CYLIECTBYET HECKOJIBKO
3pelbIX PeLIeHUH, aIanTHPOBAHHBIX IO HY X1l e-government: Hyperledger Indy, Ethereum, Sovrin,
Quorum u apyrue. Kaxxnoe u3 Hux obnagaer cnennpuuecKuMU XapakTepUCTHKAMHU, BIUSIOIIUMH Ha
YPOBEHb J0BEpUsl, MACIITAOUPYyEMOCTb, IPUBATHOCTh U IOPUINUECKYI0 COBMECTUMOCTb.

B rabnune 1 npuseneno nogpoOHoe cpaBHeHne KitoueBbIx DL T-mmardopm, mpuMeHseMbIX IS
MOCTPOCHUSI CHCTEM HHU(POBOM MICHTUYHOCTH, BKIIOYAs MX TEXHOJIOTMYECKHE XapaKTEPUCTHUKH,
YPOBEHb IPHUBATHOCTH, COBMECTUMOCTb C TOCYIAapPCTBEHHBIMH CHCTEMaMH U JpyTrue BasKHbIC
napamMeTphl.

Tabmuna 1
Cpasuenue kinoueBbix DLT-mmardopm ais mocTpoeHus cucteM HUPpoBOi HISHTUYHOCTH:
0COOCHHOCTHU M OTPaHUYCHHUS

ILnargopma Tun peecrpa u IIpuBaTHOCTH M IIppMeHUMOCTD B e-
noaaeps;kka SSI MacIITadupyeMocTh government

Hyperledger | Paspeménnsii, noJsiHas | Beicokuit ypoBeHs | PekomeHnnyercs JU1sL

indy MOAICPKKA IIPUBATHOCTH,  CPEIHss | MHTErPALMK C rocpeecTpaMu
CaMOYIIpaBIIsIEMON MaciTabupyeMocTh u YAOCTOBEPSAIOILUMHU
UJEHTUYHOCTH LEHTpaMu

Ethereum [TyOnuyHbIH, Huskas  nmpuBatHOCTH, | OrpaHNYEHHAs
OrpaHUYCHHAs MOJAJEPKKa | BBICOKAs IIPUMEHUMOCTD, Tpedyer
KOHIICTIIUH UICHTHYHOCTH | MACIITaOUPYEMOCTh nopaboTKN oA

TOCCTAaHIapPThI

Sovrin [TyGnuuHo-pa3peméHnblil, | Boicokas mnpuBaTHOCTB, | [logxonut JU1sL
IOJIHAS MIOAICPKKA | CPEHSIA HallMOHAJIbHBIX  IIPOEKTOB,
CaMOYIIpaBJIsIEMON MaciTabupyeMocTh unrerpupyercs ¢ DID u VC
UJEHTUYHOCTH

Quorum Pa3peménnsiii, yactuunas | CpenHsiss NPUBATHOCTh, | MOXKET HCIIONIB30BATHCA B
MOACPKKA BBICOKAas BEJIOMCTBEHHBIX CUCTEMAX C
I0JIb30BATEIBCKOIO MaciTabupyeMocTh HaCTPOUKOMN IMPUBATHOCTH
KOHTPOJIA

Corda Paspe€nnsii, Beicokass mnpuBaTHOCTB, | HacTUUHO [IPUMEHUMA,
OrpaHUYCHHAs MOAJEPKKA | BBICOKAs TpeOyeT amanTauuu UL
yepes IIJIarHbI U | MacCIITaOMpPyeMOCTh UACHTU(PUKAIIMOHHBIX 33124
HaCTPOUKHU

AHanu3 npeACcTaBIeHHBIX B Ta0nuIle m1aT¢opM MOKa3bIBACT, YTO HAMOOBIINI MOTEHIHAI [T
BHE/IPEHUS B TOCYIAapCTBEHHbIC MICHTU()UKAIMOHHBIE CHUCTEMBl JEMOHCTPUPYIOT pELICHHUS
Hyperledger Indy u Sovrin, opueHTHpOBaHHBIE Ha MOJJEP)KKY KOHIEMIHUU CaMOYTpaBlsieMOn
UJCHTUYHOCTH U oOecIieueHre BBICOKOTO YpOBHS npuBaTtHOCTH. [1nardopmbl 00mero Ha3HaueHHs,
takne kak Ethereum m Quorum, XoTs u 00MamalOT BBICOKOW MAacIITaOMPYyEeMOCTBIO, B 0a30BOA
KOH(UTYpalluu HEJTOCTAaTOYHO aJalTUPOBAHBI K TPEOOBAHUSAM 3aIUTHI MEPCOHATBHBIX AAHHBIX U
HOPMAaTHUBHOM coBMecTMMOCTH. Pemenuss Ha ©6a3e Corda MoryT OBITh NPUMEHHMBI B
MEXBEJOMCTBEHHBIX ~ CIEHAPHAX, HO TpeOyloT J0pabOTKHM MEXaHM3MOB HICHTU(UKAIHIH.
CrnenoBatenbHO, BEIOOpP TEXHOJOTHU JOJDKEH 0a3MpOBATHCSI HA KOMILJICKCHOM OIlEHKE MPUBATHOCTH,
MacITabupyeMOCTH U COOTBETCTBUS PETYSATOPHBIM TPEOOBAHUSAM KOHKPETHON IOPUCAUKIINU.

Baxusim acmekrom BbiOopa DLT-rutatgopmbl Takke CTAHOBUTCS YPOBEHB 3pEIIOCTH
HKOCUCTEMBI, HAJIM4YHE MOJACPKKH CO CTOPOHBI pa3pabOTUMKOB M COOTBETCTBHE HAIIMOHAIBHBIM
crangaptam uHpopmaunonHoit 6e3onacuoctu [4]. Tak, Hyperledger Indy yxxe amantupoBan mis
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MHTETPAlli C HAlMOHAJIHHBIMH HMIECHTH()HUKALMOHHBIMA CHUCTEMaMH B psji€ CTpaH, BKIIOYas
nwioTHeIe poekThl B Kanane u Muauu, 4ro nenaer ero nmpuBJiIeKaTeIbHBIM JUIsl MacIITaOupyeMbIxX
pelieHuii B cepe rocyIapCTBEHHOTO YIPaBICHUS.

Kpome TOro, mpu mpoeKTHpOBaHMU HACHTH(PHKAIMOHHBIX cucteM Ha Oaze DLT ocoboe
BHUMAaHHE JOJDKHO YIENATHCA HHTEpONepadeabHOCTH. BO3MOXHOCTP OOMEHA JaHHBIMU MEXIY
waTpopMaMu U BEIOMCTBaMH 03 MOTepH TOBEpUsl KPUTUUYECKH BaskHA JJISI IOCTPOCHUS €IUHOU
U(pPOBON MACHTUYHOCTH, IPUTOTHON Il UCTIOJNB30BAaHMS B PA3IMYHBIX cepax - OT HAJIOTOBBIX
CEPBHUCOB 0 DIIEKTPOHHOTO 3/apaBooxpaHeHus. Takue wmexanusmbl, kak DID (Decentralized
Identifier) u VC (Verifiable Credentials), cTaHOBSITCS KITFOUE€BBIMH CTaHAAPTAMH, CTI0COOCTBYFOIIIMMHU
COBMECTHUMOCTH MEXJly CUCTEMaMH, HE3aBUCUMO OT BBIOpaHHOU 06a30BOi HHPPACTPYKTYPHI.

Haxkonen, He MeHee 3HAUUMBIM (DAaKTOPOM SIBJISIETCS TUOKOCTH JIMIICH3UPOBAHUS U MOJEIH
ynpaBineHust 1wargpopmoit. Ilnatdopmbl ¢ OTKPBITBIM — HUCXOIHBIM  KOJOM, yIIpaBlisieMble
KoHcopimyMamMu i ¢ongamu (Hanpumep, Hyperledger Foundation), obGecneunBaioT O0nbIIyIO
MPO3pPaYHOCTh M BO3MOKHOCTH aJanTallid K JIOKaJbHBIM TpeOoBaHUsIM. B TO Bpems Kak
NPONpUETAPHBIE PEIIEHUS] MOTYT OIPAaHHMYMBATh PA3BUTHE 33 CUET 3aBUCUMOCTU OT KOHKPETHOTO
BEH/I0pa U CTOUMOCTH BJIJICHHUS.

YpoBHHU 3pejiocTH BHeApeHus uu@ppoBod uaeHTHYHOCTH ¢ DLT B MexkayHapoaHoit
NpaKTHKe

Buenpenne 1um¢poBoil WACHTUYHOCTH C WCIOJNB30BAaHHEM paclpelesiéHHBIX PEecTpOB B e-
government-cuCTEMax HAaXOOUTCS HAa Pa3HBIX CTAAUAX 3PEIOCTH B 3aBUCUMOCTH OT MOJIHTUKO-
HSKOHOMHYECKOTO KOHTEKCTa, HOPMATUBHOTO PETYIHMpOBaHMS M 1U(POBOHl 3peroctu cTpanbl. Ilo
COCTOSIHUIO Ha TEKYIIMH OJTam pa3BUTHS MOXKHO BBLICIHTH HECKOJIBKO YPOBHEH 3penocTH,
oTpaXkaromux r1youny unrerpaunu DLT B rocynapcTBeHHYI0 HHPPACTPYKTYPY:

HavaabHblii ypOBeHb - CTpaHbl, HCCIEAYIOIIME BO3MOXXHOCTU TPUMEHEHHUsS OIOKYeiH-
TEXHOJIOTH, HO HE IPUCTYNUBILNE K NWIOTHBIM BHEAPEHUAM (Harpumep, ApreHTuHa, Kazaxcran).

IInnoTHBIA YyPOBeHb - pealin3yoTcs OrpaHMYCHHbIE TIPOCKTHI B OTJCIBHBIX BEIOMCTBAX WM
peruoHax, Kak npaBuio, 0e3 MacTaOHOW HOPMAaTHUBHOM 0asbl (Hanpumep, Unaus, YkpanHa).

HuTerpanuonHblii ypoBeHs - iardopma udpoBoit uaeHTuyHoCcTH Ha 6aze DLT BkitoueHa
B e-government-3KOCHCTEMY, OXBAThIBasi HECKOJIBKO C(ep: 31paBOOXpaHEHUE, HAJIOTH, TOJIOCOBAHNE
(manpumep, Dctonus, Kanazna).

CraOWibHBIH ypOBeHb - YCTOHYMBO paboTaioiias, TMpPOBEPEHHAas BpPEMEHEM U
peryiupoBaHUEM  apXUTEKTypa,  CIIOCOOHAas  MaciuTabupoBaTbcs W COOTBETCTBOBATb
MEXIyHapOIHbIM cTaHaapraM (Hanpumep, FOxnas Kopes, Cunramyp) [5].

IIpaBoBble M JTHYeckHe acneKkTbl npuMeHeHuss DLT B cucremax nudgposoit
UAEHTHYHOCTH

Buenpenne 1udpoBoll HASHTUYHOCTH C HCIOJIB30BAaHUEM DACHpPEICIEHHBIX PEECTPOB B
roCy/lapCTBEHHBIE HH(POPMALMOHHBIE CUCTEMBI TPeOyeT TIIATEIBHOTO yueTa MPaBOBBIX, ITHYECKUX
U PeryasTopHbIX acrekToB. OcoOyio akTyaJbHOCTh 3TH BONPOCHI MPUOOPETAIOT B KOHTEKCTE
XpaHeHus1, 00paOOTKM u BepuU(UKAIMM TEPCOHANBHBIX JaHHBIX, a TaKXKe B YCIOBHIX
TPAHCTPAHUYHOTO B3aUMOACHCTBUS.

C ToukM 3peHHs 3aKOHOJATEIbCTBA, OCHOBHBIM OPHEHTHPOM JUIsl OONBLIMHCTBA CTpPaH
ocrarotcs nonoxkeHust GDPR (General Data Protection Regulation), a Takxke HallMOHAIBHBIC 3aKOHBI
O 3alIUTe NEepPCOHANbHBIX MAHHBIX. VCHOJIb30BaHME HEU3MEHSEMBIX U IyOIMYHBIX OJIOKYCHHOB
MOXET MPOTHBOPEUMTH MPaBy Ha yaslieHHue HMH(opManuu («mIpaBo OBITH 3a0BITBIMY»), YTO CO3IAET
MIPOTUBOPEUHE MEXKIY MPUHIMIIAMH JICHEHTPAIN3aluU U HOPMAaTUBHBIMH TpeOoBaHUAMHU [6].

OnHuM U3 myTel peueHus TaHHOH npoOieMbl cTaHOBUTCS NpuMeHeHue off-chain-xpanumuig
WIA XCIIMPOBAHHBIX CCBHUIOK, IJI€ CaMU IE€PCOHAJIbHBIC JTaHHBIC HE 3aIllMCBIBAIOTCS B peEecTp, a
MCTIONB3YIOTCSl CCBUIKM Ha 3allM(pOBaHHBIC BHEIIHWE XPaHWIUILA. DTO MO3BOJSIET COXPAHHUTH
npeuMyIecTBa  OnokuelHH-mMonenu  (Ipo3padHOCTh M HEU3MEHSEMOCTh) ©0e3  HapylIeHus
KOH(UACHINAIBHOCTH.

Kpome mpaBoBOro peryinupoBaHusi, 3HaYUMYIO pOJIb UTPAIOT 3TUYECKHE BOIPOCHI, CBSI3aHHbIC
¢ 1IM(POBBIM HEPABEHCTBOM M BO3MOXHBIM HAaBSI3bIBAHUEM TEXHOJIOTHH YS3BUMBIM TpyIIaM
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HaceneHus. OO0s3aTeNbHOE HUCMOJIb30BaHUE IUQPPOBON HIEHTHMYHOCTH Ha ocHoBe DLT moxer
co3JaBaTh Oapbepbl VIS JIUI] C OTPAHUYCHHBIM JOCTYIIOM K HU(POBBIM YCTPOICTBAM UM UHTEPHETY.

He meHee BaxHBIM sBIIsIeTCS 00eCTiedeHne MHCTUTYIMOHAIBHOM nogoTuéTHOCTH. [IpriMenenue
caMOyIpaBisieMOll ITM(PPOBON HAESHTUYHOCTH TpeOyeT HaIWuusi JOBEPEHHOW HHEOPACTPYKTYpHI:
areHTCTB MO BBIMYCKY HICHTU(UKATOPOB, OPraHOB ayAHuTa, a TAaKXKEe MEXaHU3MOB pa3pelICHUs
ciopoB. be3 3THX s1eMeHTOB m00bIE JCLEHTPAIN30BAHHBIC APXUTEKTYPbl PHUCKYIOT HOTEPATH
JETUTUMHOCTB B IJ1a3aX I0JIb30BATEIEH U PETYIATOPOB.

Takum oOpasom, pazpaboTka nudpoBoi uaeHTnaHOoCcTH Ha 6a3e DLT momkHa OCHOBBIBATHCS
HE TOJIBKO HA TEXHOJIOTMYECKOH COCTOSTEIHLHOCTH, HO U Ha YETKOM COOJIIOJICHUH MPABOBBIX HOPM,
MIPUHITUIIOB CIIPABEUIMBOCTH M COLMAIBHOTO OanaHnca. 1o TpedyeT MeXAUCIUILIMHAPHOTO MOAX0/1a
C y4aCTHEM TEXHOJIOTOB, IOPUCTOB, NPEICTABUTENICH TOCYIapCTBa U I'PaXkJaHCKOTO O0IIeCTBA.

Mopnenu posepusi U pacnpegejieHue orercrBeHHocTH B DLT-cucremax nudgposoit
WACHTHYHOCTH

B apxurektype unpoBoif HASHTUYHOCTH HA OCHOBE PacHpeIeIEHHBIX PEECTPOB BAKHEHUIITYIO
POJIb UTPAET MOJEIIb PACTIPENETICHHS JOBEPUS U OTBETCTBEHHOCTU MEXKy yYaCTHUKAaMU CUCTEMBI. B
OTIMYUE OT LIEHTPAJIU30BAHHBIX PEUICHHM, I71€ BCS JIOTMKA U OTBETCTBEHHOCTh COCPEIOTOUEHBI B
OHOM OpraHe, pacHpelesIEHHbIE MOJAEIM NPEANONaraloT KOOPAWHALMI0 MEXIy HECKOJIbKUMU
ponsmu:

Issuer (OMHUTEHT) - opraHu3anusi, yIOJIHOMOYEHHas Ha BBINYCK HICHTU(UKATOPOB WIH
arTecTaToB (HampuMep, HAJoroBas CIIyk0a, YHUBEPCHUTET).

Holder (/Iepxarens) - CyObEKT HASHTUYHOCTH (TPaXKIaHUH, IOPUANIECKOE JIUIIO), XPAHALIHHA
CBOU MJICHTH(HUKALMOHHBIEC JAHHBIC U YIPABJISAIOMINN TOCTYIIOM K HUM.

Verifier (IIpoBepsromuii) - cTOpoHa, 3ampalluBaronias NOATBEPKACHHUE TEX WM HHBIX
aTpuOyTOB JMYHOCTH (Hampumep, padboTonareib Wik OaHK).

Registry node (¥Y3en peectpa) - y4acTHUK CeTH, MoAJepKuBaromuii uHPppactpykrypy DLT,
obecrieurBas HEU3MEHIEMOCTb U IOCTYIHOCTh 3aIHCel.

Governance authority (Perynstop) - Hag30pHBIN OpraH, yCTaHAaBIMBAIOLINN TEXHUYECKUE U
IOPUINYECKHE PAMKH (DYHKIIMOHHUPOBAHUS BCEH CUCTEMBI.

Ha pucynke 2 mpezacraBiieHa cXeMa paclpeleleHHs ITUX poJied U MOTOKA JAOBEPHUS MEXAY
HUMH.

Bbigaua
yOOCTOBEpEeHUs!

<

MpepbsiBneHve
aTTectarta PerynaTopHbiii
KOHTPOIb

3anucb
B peecTp

Lepxatenb
b e AL MpoBepsio-
L
\ Y3en

peecTpa

Pucynok 2. Pacnipenenenue poeii 1 MOTOKOB TaHHBIX B cHUCTeMe U(POBOI HIeHTHYHOCTH Ha ocHOBe DL T

[IpencraBnenHas cxema JEMOHCTPUPYET KIIFOUEBOE PACIIPEACICHUE POJIEN U B3aUMOJICUCTBUN
MEXIy YYaCTHHKAMH JCICHTPATM30BAHHON CHCTEMbl U(POBONM HACHTUYHOCTU. B oTinyme ot
LIEHTPAJIN30BaHHbIX MOJEJeH, apxurekrtypa Ha ocHoBe DLT mnpeamycmarpuBaer mnepenady
OTBETCTBEHHOCTH OT €IUHOIO OIeparopa K MHOXKECTBY JIOBEPEHHBIX CTOPOH: 3MHUTEHTOB,
nepskareneit u nposepsitonux [7]. Takast Moaesb MOBBIMIAET MPO3PAYHOCTH, MACIITAOUPYEMOCTh U

Ne 2/2025 Journal «Professional Bulletin. Information Technology and Security» 38



The scientific publishing house «Professional Bulletin»

YCTOMYMBOCTh CHCTEMBI, OJHAKO TpeOyeT CTPOrod KOOPAMHAIMM MEXIY pOISIMH W HaTUYUs
perynupytouieii MHGpPacTpyKTypbl. [IOTOKM JTaHHBIX MEXIY Y4YaCTHHKAMH OpPraHM30BaHbBl Ha
NPUHIUNAX HW30MpPaTeNbHOTO JOCTyNa M Kpunrorpaduyeckoil Bepuduranmu, 4ro oOecreynBaeT
0anmaHc MEXy IPUBATHOCTHIO U JOCTOBEPHOCTHIO.

TexHos0rn4eckue orpaHu4veHusi U npodaembl mMacmradupyemoctu DLT B cumcremax
M poBOH HACHTUYHOCTH

Hecmorpst Ha mmupokoe oOcyxnenue mnpeumymiectB DLT B koHTekcte 1uppoBOii
UJCHTUYHOCTH, WX BHEAPEHUE B TOCYIApCTBEHHBIE CHUCTEMBl CTAJIKUBAETCS C PAIOM
TEXHOJIOTHUECKUX OTPAaHMYCHHUH, CIIOCOOHBIX CYIIECTBEHHO 3aMEUINTh WM  YCIIOXKHHUTD
MaciTabHoe MpUMEHEHHE.

OnHUM U3 KITIOUEBBIX BBI30BOB SIBJISIETCS HM3Kasl MPOIMYCKHAsl CIIOCOOHOCTh M OTpaHUYCHHAs
Mmacmtabupyemocts OonbimmuacTBa DLT-mmargopm. Ilpu OGonbiioM KOIMUYECTBE TpaH3aKUUM -
HarmpuMep, NP MAaCCOBOM OOpAIIEHUH TPaKAaH K AJIEKTPOHHBIM CEpBHUCAM - CHUCTEMa MOXKET
UCTIBITHIBATD 33/ICPKKH HITH IIeperpy3Ky. OcOOEHHO 3TO aKTyaabHO JUIsL MyOIHMYHBIX OJOKYEHHOB, T1Ie
BCE Y3JIbI JOJDKHBI IOCTHYb KOHCEHCYCa, YTO YBEITMUUBACT BpeMsi 00pabOTKH.

JIpyroit KpUTHYECKH aCTeKT - SHEPronoTpedieHHe U MPOU3BOAUTEIBHOCTD. XOTsI HEKOTOPhIE
wiatgopmbl (Hampumep, Tezos, Algorand) yxe peanusyror 3HeprodpQGeKTHBHBIE HPOTOKOIBI,
OoJplIast 4acTh CYIIECTBYIOIIMX pelIeHui BcE emé 6a3upyeTcsi Ha peCypcoEMKUX alropuTMax, He
COOTBETCTBYIOLIUX IPUHIIMIIAM yCTONYHUBOIO pa3BUTHs U «3en€Hbix» UT [8].

Taxke ocraércss HepemIEHHON MpobiaeMa MHTEpOnepabenbHOCTH MEXAY pazauuHbiMu DLT-
wiatpopmamMu. B ycioBusiX, Korga rocylaapcTBEHHas CHCTEMa JOJDKHA B3aUMOACHCTBOBATH C
KOMMEpPYECKHMMH, OaHKOBCKMMU U MEXIYHAapOIHBIMH CEpBHUCAMH, OTCYTCTBHE CTaHIApTOB
3aTpyAHAET OOMEH JaHHBIMH, a TAKXKe YCIOKHACT ayIuT U MUTPALMIO MEXTy TUIaT(hOopMaMHu.

JIONOTHUTENbHBIE PUCKU BO3HUKAIOT B CBSI3U ¢ OOHOBJIEHUEM M MOAM(UKALUEH JaHHBIX, YTO
KPUTUYHO U1 U(pOBOIl MaeHTHYHOCTU. TexHOMorus OJOKUYEHH 1Mo CBOEH MpHUpOe HEU3MEHseMa,
a 3TO 3aTPyIOHSET peaju3allii0 MEXAaHU3MOB OT3bIBa YIOCTOBEPEHUI, BHECEHUS! UCIPABICHUN WIN
yAaJeHHUs JaHHBIX B COOTBETCTBUU C HOPMAaTUBHBIMU TPEOOBAHHUSIMH.

Haxonen, BaXHO y4MTBIBATh CJIOXKHOCTb uHTerpauuu DLT-pemenuii ¢ ycrapeBLIMMU
rocynapctBeHHbIME VIC, r11e OTCYTCTBYET €MHBII MPOTOKOJ MM UHTEpdeiic B3auMoaeiicTBusi. I1o
TpeOyeT BIOKEHHUH B aJlanTallMOHHbIE CJIOM, HITI03bI U API, 4yTO yBenu4yuBaeT CTOMMOCTb U CPOKH
BHEJPEHUS.

Taxum o6pazom, BHeapenue DLT B e-government-cuctemMbl HUPPOBON UACHTUYHOCTH TPEOyeT
HE TOJIbKO HOPMaTUBHOM U OPraHMU3allMOHHOW TOTOBHOCTH, HO ¥ CEPHE3HOM TEXHUYECKOW aJanTallH,
OpPUEHTUPOBAHHON Ha YCTOWYMBOCTH, COBMECTUMOCTD U IIPOU3BOAUTEIBHOCTD.

CpaBHenne DLT-nuiargopm no kpurepusivm NpMMeHUMOCTH B e-government

Br16op TexHonmornyeckoil miaarhopmsl A peanu3aunu Hu(poBoil HISHTUYHOCTH B CUCTEMAX
AIIEKTPOHHOT'O MPABUTENILCTBA OINPELIIIETCS HAOOPOM KITIOYEBBIX KPUTEPHUEB, OT KOTOPHIX 3aBUCHUT
HE TOJBKO IPOU3BOJUTEIBHOCT, HO M IOPUIUYECKAs COBMECTHUMOCTb, YCTOHYMBOCTb H
MacITabupyeMoCcTh apXUTeKTypbl. Cpein TaKuX KPUTEPUEB BBIIEISAIOTCS:

¢ [Tpon3BOIUTENBHOCTh M MPOIMYCKHAsI COCOOHOCTD - CIIOCOOHOCTh CHCTEMBI 00padaThIBaTh
00JIBIIIOE KOJIMYECTBO TPAH3aKIMI B CEKyHTy 0€3 CHUKEHUS CTAOMIIbHOCTH.

¢ DHEProdPGEeKTUBHOCTh - BAXKHBIA TOKa3aTelb yCTOWYMBOCTH H  JIKOCOIHMAIBHOMN
COBMECTHMOCTHU TEXHOJIOTUHU.

e luTepornepabenbHOCTh - BO3MOXKHOCTb B3aUMOJICHCTBUS C JAPYTMMH IularGopMamMu U
CTaHapTamMH HU(PPOBON UIEHTHYHOCTH.

e [Tognepxxka SSI (Self-Sovereign Identity) - Hanuure BCTPOCHHBIX MEXaHU3MOB YIPaBJICHUS
YAOCTOBEPEHUSIMHU CO CTOPOHBI M0JIb30BATEIEH.

¢ ['MOKOCTh M aJanTUPYEeMOCTh - BOSMOXXHOCTh HACTPOUKH apXUTEKTYpPbI MOJI HOPMAaTUBHBIC U
OpraHHU3aIMOHHBIE 0COOEHHOCTH Pa3HBIX CTpaH [9].

Anamu3 poctynHeix DLT-mnardgopm mokasbiBaeT, 4TO HH OIHA M3 HUX HE o00namaer
aOCONIOTHBIM TPEBOCXOACTBOM 1O BceM KpurepusMm. Ethereum, kak ogHa u3 Haubonee
pacnpocTpaHEHHBIX MYOIMUYHBIX OJOKYeHH-TIaT(opM, oOecreyMBaeT BBHICOKYI0 COBMECTUMOCTD C
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JELIEHTPAIM30BaHHBIMU MPUIIOKEHUSIMH, OTHAKO CTPAAeT OT OTPAHNYCHHON MacIITabupyeMOCTH U
BBICOKOM HSHEpro3arparHOCTH B CBOEH KIACCHMYECKOM peanu3aluu (IO IMepexojia Ha aJIropuTM
koHceHcyca Proof-of-Stake). [Ipu sTom aganrtamus Ethereum st Hy»xa nudpoBoil HASHTHYHOCTH
TpeOyeT BHEAPEHHSI JOTIOTHUTEIBHBIX IPOTOKOJIOB M HA/ICTPOEK.

Hyperledger Indy u cBsizanHas ¢ Heil skocucTeMa Sovrin M3HAYaJbHO OPUEHTHPOBAHBI Ha
peanu3aIfio KOHIEIIHHA caMoyTIpaBisieMoi uaeHTHIHOCTH (SSI). DTH mrarhopMbl AEMOHCTPHUPYIOT
BBICOKUH YpPOBEHb COOTBETCTBHMS TpEOOBAHUSAM TPUBATHOCTH, YIPABICHHUS JOCTYIIOM U
JELIEHTPAIM30BaHHON BepU(UKAIIUH, HO YCTYNAIOT B THOKOCTH M HHTETPALIMOHHOM COBMECTUMOCTH
C IpyTUMH CUCTEMaMH, a TaKXke TPeOyIoT 0oJiee CI0KHONW HACTPOUKU UHPPACTPYKTYPHI.

Quorum u Corda, pa3zpaGoTaHHbIE JUII KOPIOPATUBHBIX U MEXBEIOMCTBEHHBIX CIICHAPHEB,
MOKA3bIBAIOT XOPOILHUE PE3YyNbTaThl B YaCTH MacIITAOUPYEMOCTH, YIPaBISIEMOCTH U PETYIATOPHON
coBMecTUMOCTH. Tem He MeHee, B 0a30BOil KOH(UTYpAIIUH 3TH PELICHHUS HE COJEpKaT BCTPOSHHON
nogaepxkku SSI U TpeOyrOT MOMOTHUTEIHHOW HACTPOWKH IS peaM3allid MOJb30BaTeIbCKOTO
KOHTPOJISL Ha/l yIOCTOBEPEHUSIMH.

Takum o6pazom, BeIOop DLT-ratropMbl 10KEH OCYIIECTBIATHCSA HE TOJIBKO HA OCHOBAaHUU
TEXHUYECKHX XapaKTePHCTUK, HO U C y4E€TOM TpeOOBaHMN KOHKPETHOH IOPUCIAMKIIMH, YpPOBHS
3penoctu UT-uHppacTpyKTyphl, ClieHApueB MCIIONB30BaHUS U TOJIUTUKO-TIpaBoBoil cpensl [10]. B
HEKOTOPBIX CIIydasiX ONpaBIaHO NPUMEHEHHWE THOPUAHBIX MOJEJCH, Iie OAMH YPOBEHb CHCTEMBI
(YHKIMOHUPYET Ha OCHOBE IMyOJMYHOTrO OJOKYElHa, a IPYyroi - Ha MPUBATHOM WM pa3peInéHHON
CETH, YTO MO3BOJISIET JOCTHYb KOMIIPOMHUCCA MEXKTYy OTKPBITOCThIO, KOHTPOJIEM B O€30M1aCHOCTHIO.

3akinouenne

PazButue mnudpoBoit maentuuHoctn Ha ocHoBe DLT mpexacraBiser co0oil BaxHeiiiee
HampaBiieHue U(pPoBOil TpaHCHOpPMALMM TOCYJApCTBEHHOTO YIpaBieHUS. Takue TEeXHOIOTHU
MO3BOJISIFOT IOBBICUTH YPOBEHB JOBEPHSI, IPO3PAYHOCTH U MOJIH30BATEIHCKOTO KOHTPOJISI B CHCTEMax
UACHTU(PUKAIIMK, YTO OCOOCHHO AaKTyaJlbHO B YCJIOBUSX pacTylIuX TpeOOBaHUM K 3aliuTe
NEPCOHATIBLHBIX JAHHBIX, 00€CIIeUeHUIO KHOEPYyCTOMUYMBOCTH M MEXKIyHAPOJAHON COBMECTUMOCTH.

B craree OblT mpoBeACH aHANU3 apXUTEKTYPHBIX MOAEJCH, TEXHOJIOTHYECKHX IardopMm H
MPAaKTUK BHEAPEHUS LU(POBON HACHTUYHOCTH B PA3IMYHbIX cTpaHaX. [lokazaHo, 4T0 HaMOONIBIITYIO
3peNioCTh B OTOM HANpaBICHUH JEMOHCTPUPYIOT TOCyJapcTBa C pPa3BUTON IU(pOBOH
UHPPACTPYKTYpOil, HOpMaruBHOW 0a30if M cTparermeid BHEAPEHHS CaMOYIpPaBIsIEMbIX
YIOCTOBEPEHHIA.

KitoueBble TEXHOJIOTMYECKHE OTPaHMUYCHHS - MaCIITa0HMpyeMOCTb, MHTEPONEepadeIbHOCTh,
5HEepro3(pPpeKTUBHOCTh W CIOKHOCTh HHTETPALMU - OCTAIOTCS 3HaYMMbIMHM Oapbepamu. Hx
NPEOJ0JICHHE BO3MOXKHO uepe3 NMPUMEHEHHE THOPUAHBIX ApPXUTEKTYp, Pa3BUTHUE CTAHIAPTOB U
MHCTUTYLIMOHAJBHYIO TMOJJIEPKKY CO CTOPOHBI TOCyAapcTBa. BaXXHO MOJYEpPKHYTh, YTO
YHHUBEPCAJIBHOTO PELICHUsI HE CYIIECTBYET: KaXkJas CTpaHa JIOJDKHA pa3padarhiBaTh COOCTBEHHYIO
MoJIeNb LHU(POBOM HAESHTHYHOCTH C YYETOM JIOKAJIBHOTO KOHTEKCTa, MPH 3TOM OIUPAsACh Ha
MEXXTyHAPOIHBIN OTBIT U OTKPHITHIE TEXHOJIOTHH.

B mnepcnektuBe umMenHo DLT MoxkeT cTarb OCHOBOM Uil MOCTPOECHUS I10-HACTOSLLEMY
JIOBEPEHHBIX, PACIpPENCNEHHBIX M CaMOYINpPaBIsEMBbIX LU(PPOBBIX YIOCTOBEPEHUN JIMYHOCTH,
CIOCOOHBIX TpaHC(POPMUPOBATH HE TOJIBKO e-government, HO M BCIO SKOCUCTEMY LHU(POBBIX YCIYT.
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Abstract

The article analyzes the engineering and architectural foundations underpinning the
development of visual editors for digital media. It examines principles of modularity, extensibility,
and separation of concerns, which enable the creation of interactive content without programmer
involvement. It is emphasized that such editors support the automation of multimedia content
production, facilitate integration with websites via API, and ensure secure isolation of executable
code. The article also examines monetization strategies that include integrating advertising formats
into visual media and assesses the impact of interactive features on audience engagement metrics. It
is emphasized that utilizing visual editors aids in streamlining resource usage and fostering a
technology-resistant framework for digital media creation.

Keywords: visual editor, digital journalism, interactive content, user engagement,
advertising, marketing.

AHHOTanug

B craTpe aHaNM3MpYIOTCS MH)KEHEPHBIE M apXUTEKTYPHBIE PEILEHUS, JIEXKAIlUe B OCHOBE
pa3paboOTKM BU3yalbHBIX PENAKTOPOB JUIS LUGPOBBIX Meaua. VICCIemayloTcsi NPUHIIMITBI
MOJTyJTbHOCTH, PACIIUPSIEMOCTH U Pa3/IeIeHUs] OTBETCTBEHHOCTH, ITO3BOJISIONINE 00eCTIEYUTh paboTy
C UWHTEPAKTHUBHBIM KOHTEHTOM O0e3 ywacTusi mnporpamMmuctoB. IloguépkuBaercs, 4TO Takue
peNaKkToOphl MO3BOJIAIOT ABTOMATHU3MPOBATH IMPOLECC CO3MaHMS MYJIbTUMEAUWHBIX MyOIUKaLui,
MHTErpupoBaThes ¢ caiitamu depe3 APl u obGecrneunBarh 6€30MacHyI0 M30JSILHIO UCIIOIHSEMOTO
koga. Kpome TOro, B cTaTbe paccMaTpUBAIOTCS MOJEINM MOHETHU3ALMM, IIpeaIoiararoiye
MHTETPALUIO PEKIAMHBIX (JOPMATOB B CTPYKTYPY BU3YaJIbHBIX IMyOJHKAIMHA, a TaKKe MPOBOIUTCS
aHaJIN3 BIUSHUS WHTEPAKTUBHBIX MEXAaHU3MOB Ha IIOBEJIECHYECKHME METPUKU ayAUTOPHH.
[TomuepkuBaeTcs, YTO HCMOJNb30BAaHUE BHU3YAIBHBIX PEIAKTOPOB CIIOCOOCTBYET ONTHUMH3AINUU
pecypco3aTpaT U (OPMHUPOBAHUIO TEXHOJOTHYECKH YCTOMYMBOW HH(PACTPYKTYphl LUPPOBOTO
MENanpOU3BOICTBA.

KiaueBble ci0Ba: BH3YalbHbIM pemaakTop, HU(poBas XypHAIUCTUKA, WHTEPAKTHUBHBIN
KOHTEHT, BOBJIEUEHHOCTH I10JIb30BATENIEH, peKiIamMa, MapKETHHT.

Introduction

The swift progress of digital technologies, along with changing trends in media consumption,
has caused a change in the formats employed for delivering journalistic content. Modern viewers —
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especially younger ones — show a steady inclination for visually appealing, interactive, and animated
content that reveals notably greater engagement than conventional text-focused publications. The
creation of such content often necessitates the participation of expert technical teams, rendering the
process labor-intensive, time-consuming, and expensive regarding both development and continuous
upkeep.

In response to these challenges, there is growing interest in tools that democratize the creation
of visual content. One such solution is the integration of embedded visual editors within the editorial
systems of digital media platforms. These editors enable designers and editorial staff to independently
assemble full-fledged multimedia articles incorporating animations, interactive components, and
visual narratives — without the need for developer involvement. The rendering and functionality of
these visual publications are managed via a universal client-side script delivered from the editor
vendor’s cloud infrastructure. This architectural approach facilitates centralized control over
presentation logic, ensures backward compatibility with previously published materials, and allows
for rapid deployment of new features without requiring modifications to individual articles.

The aim of this study is to analyze the engineering and architectural foundations underlying
the development of visual editors for digital media, to explore their integration within existing website
infrastructures, and to examine their role in enabling new models of monetization through interactive
advertising content.

Main part. The transformation of content formats in digital journalism

The evolution of visual and interactive genres in online journalism has introduced radical
changes to forms of presenting information, away from the traditional text and static images towards
dynamic, multimedia, and interactive journalism. Although text accompanied by images continued
to be the primary format in the initial phases of digitalization, multimedia longreads have become
more prominent since the mid-2010s. They consist of images, infographics, integrated videos, and
animations, all contained in a unified visual story.

As learned, the population on the internet grew to over 5,5 billion during the period 2005-
2024. This rapid increase not only heightened access to online media, but it totally revolutionized
expectations on the part of audiences regarding the shape and scope of information content (fig. 1).
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Figure 1. Number of Internet users worldwide, billions [1]

Under these conditions, visual and interactive solutions have become a key mechanism in the
competition for users' attention. One of the first and most influential examples of this approach was
The New York Times' report «Snow fall: the avalanche at tunnel creek» (2012), which utilized 3D
animations, interviews, maps, and visualizations that were automatically activated as the reader
scrolled down the page [2]. According to Source and OpenNews, the longread received over 3,5
million page views and around 2,9 million unique visitors during the first six days since being
published, justifying the strong user interest in the multimedia format. The success of these projects
demonstrated the potential of combining visual and interactive content in digital journalism, not
merely enabling the transmission of information but also the building of an integrated audiovisual
product that increases emotional engagement with the material.
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Generally, the international media environment has experienced a deep change in the last two
decades, passing from traditional media to digital media. Oberlo's data report that by 2025 the
differential between time spent on traditional media and digital media in the USA is over three hours

per day (fig. 2).
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Figure 2. Comparison of time spent by users on media consumption [3]

This tendency clearly mirrors the general media market transformation from traditional
content consumption to customized digital formats. Social media are not just leading communication
platforms, but also leading news, entertainment, and advertising content providers that have
successfully displaced print and television media in consumers' daily media consumption patterns.

At the institutional level, digitalization has contributed to a redefinition of professional roles
within newsrooms [4]. Journalistic work is no longer solely text-centered: contemporary journalists
engage with visual editor interfaces, make decisions regarding the structure and visual logic of content
presentation, and participate in the development of interactive storytelling scenarios.

The automation of visual content production through the use of an embedded visual editor
significantly streamlines editorial workflows. Key stages such as preparation, layout, and publication
of multimedia materials can be carried out without developer involvement, thereby reducing the
workload on technical teams and accelerating the overall production cycle (table 1).

Table 1
Comparative analysis of production workflow stages in traditional and automated models
Production Traditional approach (without Automated approach (with visual
stage visual editor) editor)
Initiation  and | Requires  coordination  between | Performed autonomously by the
planning editors, designers, and the technical | editorial team  during internal
team to assess project feasibility. prototyping using the editor interface.
Layout and | Executed manually by developers | Performed through a  graphical
composition using HTML, CSS, and JavaScript. interface without programming, using
visual component configuration
Approval Involves multiple iterations between | All changes are made and approved
process editorial, design, and development | within a unified editorial system and
teams; delays are possible. workflow.
Testing and | Requires testing of scripts, CMS | Uses a unified rendering engine, which
debugging compatibility, and cross-browser | minimizes behavioral inconsistencies
behavior. and reduces the need for testing.
Editing and | Requires returning to the technical | Editorial team retains access to the
revisions implementation stage and | publication; changes can be made at
recompiling. any time via the editor interface.
Publication and | Requires manual embedding of code | Publication is automated and integrated
integration blocks into the CMS and |through API with the content
management system.
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configuration of the execution
environment.

Thus, the shift from manual development to systems for visual content assembly reflects a
broader trend in the evolution of digital media — from designing isolated publications to building a
flexible and reusable production environment.

Architecture of the visual editor

The modern architecture of a visual editor for digital media is based on the principles of
modularity, extensibility, and separation of concerns across application layers. A key design goal is
to offer non-technical users — including editors, designers, and content creators — user-friendly tools
for visual layout. The user interface adheres to WYSIWYG (What You See Is What You Get)
concepts, tailored to media-specific processes: editable elements (e.g., cards, containers), animation
triggers, timelines, and customizable visual settings are all set up through forms or direct interaction.

The interface is built upon a component-based framework that clearly differentiates
functional logic from visual display. This improves extensibility by permitting the inclusion of
additional widgets — such as custom blocks for data visualizations, 3D spaces, or multimedia players.
Multimedia support employs standard browser APIs: Canvas is used for 2D graphics, WebGL for 3D
content, and video elements are handled by HTMLS5 <video> tags along with wrappers for managing
playback and synchronization. Interactive components — including maps, sliders, and polls — are
encapsulated as self-contained modules with state management facilitated by a centralized data tree.

From an architectural perspective, the editor employs a client-server model with clear roles.
The customer, a single-page application utilizing frameworks such as React or Vue, handles
interactivity and local state management. The server manages storage, authentication, access rights,
and version control. Content is saved in a serialized format (e.g., JSON), distinguishing structure from
presentation and guaranteeing long-term adaptability.

A fundamental architectural element is a universal client-side script that displays content in
the user's browser according to saved descriptions. The division of data, logic, and rendering
facilitates simpler maintenance and scalability. Centralized updates, like adding new features or
modifying rendering engines, necessitate no modifications to separate articles, boosting resilience
and reducing ownership expenses.

Integration with digital media websites

Data exchange between the website and the visual editor is organized according to a
distributed interaction model, utilizing RESTful API and webhook mechanisms. During the
initialization phase, the website transmits the article ID, access parameters, current document
structure and a callback URL to the editor. Upon saving, the editor generates a JSON document
containing the full structure of the publication and notifies the website via the specified webhook,
providing a URL from which all associated media assets can be downloaded. This architecture
ensures a clear separation of responsibilities: the website remains the source of metadata,
authorization and content distribution, while the editor functions as the interface for content editing
(table 2).

Table 2
Formats and protocols of interaction between the editor and the website [5, 6]
Interaction stage Protocol / method Description
Session initialization | POST /api/session/open The website sends the article ID, access
parameters, and callback URL.
Resource loading HTTPS (GET) The editor fetches media assets from the site
using deferred authorization.
Saving changes Webhook (POST | The editor sends a JSON document with
/callback) article data and a link to media resources.
Editor access JWT / OAuth2 Authentication of editorial users via token-
based authorization.
Content serialization | JSON or Markdown-like | Structured article description for a universal
DSL rendering engine.
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Visual publications, which may include scripts, external frames, and API interactions, need to
be separated from the primary website environment. In practice, there are two main methods
employed: incorporating content inside an iframe with limited settings (such as sandbox, CSP), and
hosting interactive materials on a subdomain with a distinct execution context. CSP configurations
are enforced by the visual editor for the published content, enabling strict control over script loading,
inline code execution, and requests to external domains. This is especially important when working
with user-generated content (UGC) systems, where the threat of introducing harmful code must be
completely addressed (table 3).

Table 3
Execution environment isolation mechanisms
Isolation method Technology Application
Isolated iframe sandbox, allow-scripts | Execution of interactive publications in a container
without access to the website’s DOM.
Subdomain with | story.domain.com, Separation of security policies between the main site
CORS Access-Control- and the publication.
Allow-Origin
CSP Content-Security- Restriction of inline scripts; control over external
Policy content sources.
Token-based JWT, HMAC, | Access control for publications and protection
access temporary tokens against cross-site request forgery (CSRF) attacks.

In the context of using visual stories on UGC platforms, it is essential to account for specific
security threats associated with publishing content of unknown origin. Unlike articles created by in-
house editorial teams, user submissions may contain potentially unsafe HTML, external scripts, or
improperly formatted media files. To mitigate these risks, an automated moderation system is
implemented, encompassing document structure analysis, HTML and CSS sanitization, link and
media validation, and semantic text analysis.

Moderation can be performed either on the editor side (prior to submission) or on the website
side (upon publication). When necessary, execution environments are sandboxed using
containerization techniques with limitations on script execution time and memory usage, including
the use of Web Workers and WebAssembly-based sandboxing. This approach ensures platform
security while preserving the interactive capabilities of the visual editor.

Thus, the effective integration of a visual editor into a digital media infrastructure relies on
strict adherence to architectural principles of distributed interaction, a multi-layered execution
security model, and automated content moderation mechanisms.

Advertising effectiveness and monetization potential of interactive content

The development of visual editors within the digital media ecosystem contributes to the
emergence of new monetization models based on a high degree of integration between advertising
content and editorial formats. Unlike traditional formats — such as banners and static ad blocks —
interactive publications enable the creation of full-scale branded projects in which commercial
messages are seamlessly embedded into the logical and visual structure of the material, without
disrupting the user experience.

According to Precedence Research, the global digital advertising market reached $600 billion
in 2024. It is projected to exceed $1,483 billion by 2034, with an average annual growth rate of 9,47%
during the 2025-2034 period (fig. 3).
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Figure 3. Global digital advertising market size, billion dollars [7]

This dynamic highlights a strategic shift in the advertising industry toward digital and
personalized channels of engagement. Interactive formats are of particular interest in this context, as
they deliver significantly higher levels of user engagement compared to traditional media. According
to Mediafly, the average time spent interacting with interactive content is 13 minutes, compared to
just 8,5 minutes for static content — demonstrating superior audience retention capabilities.

Interactive elements such as animated transitions, visual highlights, tabs, quizzes, and
infographics enable the construction of personalized perception pathways in which branded content
becomes an integrated part of the user experience [8]. The adaptive architecture enables consistent
performance across various devices, it necessitates addressing the distinct requirements of desktop
and mobile environments during the markup phase of interactive article development.

Performance measurements further confirm the advantages of interactive formats: the click-
through rate (CTR) for native ads embedded in interactive publications reaches 0,2%, which is four
times higher than the industry average for banner ads (0,05%). Moreover, 88% of marketers report
that personalized interactive content helps them stand out from competitors and enhances the impact
of advertising messages [9].

Current data on corporate intentions also affirm the high potential of interactive solutions. A
2025 survey conducted by Wynter among content marketing and SEO managers and directors found
that 11,3% of respondents planned to invest more than $45,000 per month in content marketing — up
from 4,1% in 2024. This indicates growing confidence in digital formats as cost-effective promotional
channels.

Additional metrics further reflect increasing efficiency: according to a HubSpot survey of 336
SEO professionals and marketers in the U.S., the average click-through rate for SEO content is 13%,
with a median of 8%, and users view an average of 7 pages per session. Furthermore, 43% of web
analysts reported increased traffic to their primary websites in 2024 compared to the previous year,
while only 14% noted a decline.

Taken together, these data points illustrate that interactive formats are no longer just a
supplement to digital strategies, but have become a central component. By integrating visual,
technical, and marketing advantages, they enable the development of a sustainable ecosystem of
digital storytelling with high commercial returns. In today’s oversaturated media environment —
where user attention is the most valuable resource — interactivity and content personalization emerge
as key drivers of communication effectiveness and audience loyalty.

Conclusion

Visual editors integrated into the infrastructure of digital media represent a technologically
grounded tool capable of driving systemic transformation across editorial, user, and commercial
aspects of media production. Through architectural modularity, support for universal interaction
interfaces, and the separation of data presentation logic from storage layers, such systems reduce
transactional costs, enhance the flexibility of the content cycle, and enable new monetization
pathways. Amid the growing importance of visual and interactive content, the visual editor emerges
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as a resilient element of the digital media ecosystem — combining engineering reliability with editorial
efficiency.
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Abstract

This paper explores the architectural and operational complexities of implementing
microservice-based architectures (MSAs) in financial platforms. It investigates key challenges related
to modular service decomposition, inter-service communication, data consistency, and security
enforcement, with particular focus on high-assurance environments. Emphasis is placed on hybrid
design patterns, including event-driven coordination, fault isolation, and observability-driven scaling,
which enable resilience and regulatory compliance. The analysis is supported by diagrams and tabular
comparisons illustrating practical configurations. The findings aim to guide the development of
scalable, auditable, and fault-tolerant financial systems capable of sustaining real-time operations in
dynamic conditions.

Keywords: microservices, financial platforms, distributed systems, event-driven architecture,
data consistency, observability, fault tolerance, security.

AHHOTAIHUA

B crarbe paccmMarpuBalOTCs apXUTEKTYPHBIE M AKCILTyaTallMOHHbIE 0COOCHHOCTH BHEAPEHHS
MHUKpPOCEPBHUCHBIX apXxuTekTyp (MSAs) B punancosbie maardopmsl. [Ipoanann3npoBaHsl KIHOUEBbIC
npoOieMbl, CBSI3aHHBIE C MOXIYIbHOH JEKOMIIO3UIIMEH, MEXCEPBUCHONH KOMMYHHUKAIUEH,
o0ecrie4yeHneM COIVIACOBAHHOCTH JAHHBIX M pealu3aluedl pacnpefeiCHHbIX MEXaHH3MOB
0€30IaCHOCTH B YCJIOBHUSIX BBICOKHX PETYISATOPHBIX TpeOoBaHui. Oco0oe BHUMAaHHUE YAEICHO
rHOpPUIHBIM TIOAXO/aM, BKJIIOYAIOIIUM COOBITUIHOE B3aWMOJCHCTBUE, H30JALMIO OTKAa30B U
MacimTabupoBaHie Ha OCHOBe HabmromaemocTH. I[IpencraBieHbl AuarpaMMbl U CPaBHUTENIBHBIC
TaONMMIbI, WUIIOCTPUPYIOLIHE  IpakTHUYecKkue KoHurypamuu. IlomydeHHble  pe3ynbTarhl
OPHECHTUPOBAHBl Ha pPa3pabdOTKy MacHITaOUPyeMbIX, OTKAa30yCTOMUMBBIX U IPOBEPSIEMBIX
(MHAHCOBBIX CUCTEM, alAITUPOBAHHBIX K TUHAMUYHBIM YCIIOBHIM JKCIUTyaTalHH.

KiarwueBble cjioBa: MUKPOCEPBHCHI, (PMHAHCOBBIC TIAT(GOPMBI, PACIIPEACIEHHBIE CUCTEMBI,
COOBITHI{HAS APXUTEKTypa, COTJIACOBAaHHOCTh JAaHHBIX, HAOII0JaeMOCTh, OTKAa30yCTOWYMBOCTb,
0€e30I1aCHOCTb.

Introduction

The growing complexity of financial systems, coupled with demands for agility, resilience, and
regulatory compliance, has driven a shift from traditional monolithic architectures to modular,
microservice-based designs. Financial platforms today operate under conditions of high transaction
throughput, stringent latency requirements, and constant integration with heterogeneous external
systems, including payment gateways, identity providers, and regulatory databases. Monolithic
systems, while historically dominant, struggle to scale horizontally, adapt to evolving business logic,
or isolate failures effectively, thus posing a significant risk in dynamic financial ecosystems.
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Microservice architectures (MSAs) offer a compelling alternative by decomposing large
applications into independent, loosely coupled services that can be developed, deployed, and scaled
independently. This paradigm enables financial institutions to implement domain-driven design
(DDD), embrace DevOps practices, and respond swiftly to changes in compliance or market behavior.
However, the transition to MSAs introduces architectural complexity, increased operational
overhead, and non-trivial challenges in service orchestration, data consistency, and security
enforcement. For financial applications, these challenges are exacerbated by high sensitivity to
downtime, transaction integrity, and real-time observability.

This paper aims to systematically analyze the architectural and operational challenges
associated with adopting microservice architectures in financial platforms. Key focus areas include
modular service decomposition, fault tolerance, inter-service communication patterns, data
synchronization strategies, and security models. In addition to highlighting typical bottlenecks and
failure domains, the paper presents visual models and tabular evaluations of microservice
performance characteristics under financial constraints. The findings are intended to inform the
design of resilient, auditable, and compliant microservice ecosystems tailored for high-assurance
financial environments.

Main part

Modular service decomposition and domain alignment

In microservice architectures, the effectiveness of system modularization directly influences
scalability, resilience, and maintainability. For financial platforms-characterized by complex business
domains and high regulatory oversight-modular decomposition must reflect clear domain boundaries
to ensure traceability, autonomy, and auditability of each component.

Domain-driven design provides a theoretical and practical foundation for achieving this
alignment. By organizing services around bounded contexts, development teams can encapsulate
business logic and data within well-defined modules, such as Account Management, Fraud Detection,
Payment Processing, or Regulatory Reporting. Each module can evolve independently, simplifying
compliance updates and reducing the blast radius of failures. Figure 1 illustrates a sample domain
decomposition for a retail banking platform, highlighting how services are structured according to

core business functions.
Account
management

)
payment
processing

 —

Regulatory
reporting

Payment identity Regulatory
gateway provider database

Figure 1. Modular decomposition of a financial platform based on domain-driven design

Additionally, the principle of single responsibility within each microservice mitigates codebase
sprawl and facilitates the use of targeted, domain-specific technologies. For example, services
handling high-throughput payment requests may be written in low-latency languages (e.g., Go or
Rust), while reporting modules can leverage data-oriented platforms (e.g., Apache Spark or
ClickHouse) [1]. However, an over-fragmented decomposition can lead to excessive inter-service
communication and increase the cognitive load on developers and operators. Therefore, financial
institutions must strike a balance between granularity and cohesion.

fraud
detection
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Another critical factor is the consistent mapping of business capabilities to service contracts
and APIs. In regulated environments, each exposed endpoint must adhere to strict data handling
policies and provide deterministic behavior under load. Failure to standardize these interfaces not
only introduces integration risks but may violate compliance requirements, especially under data
protection and financial audit regulations.

Inter-service communication: patterns, trade-offs, and fault isolation

In MSAs, the method by which services communicate with each other is a critical design
decision that directly impacts system latency, reliability, and maintainability. For financial platforms-
where even milliseconds of delay or transaction failures can lead to regulatory violations or monetary
loss-communication patterns must be carefully selected, implemented, and monitored [2].

Two primary modes of inter-service communication exist: synchronous (typically HTTP/gRPC
APIs) and asynchronous (via message brokers such as Apache Kafka, RabbitMQ, or NATS).
Synchronous communication provides simplicity and immediacy but introduces tight temporal
coupling. A failure in a downstream service can cascade and block upstream requests, degrading
system availability. Asynchronous communication, on the other hand, enables better fault tolerance
and elasticity, decoupling service lifecycles and smoothing traffic bursts. However, it increases
system complexity and requires robust event tracking, message deduplication, and retry policies.

For financial systems, a hybrid approach is often employed. Time-sensitive user interactions-
such as account balance queries or KYC verification-are executed synchronously, while transactional
workflows like payment orchestration or anti-fraud checks are designed using asynchronous patterns
with event sourcing and eventual consistency guarantees. This dual-mode strategy ensures both
responsiveness and resilience.

Figure 2 illustrates a hybrid communication architecture in a financial microservice
environment. Core business services interact via RESTful APIs for real-time operations, while
transactional and analytical components communicate through a distributed event bus. Failover
queues, idempotent endpoints, and retry logic are incorporated to prevent message loss or duplication

in critical processes.
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Figure 2. Hybrid communication architecture in a microservice-based financial platform

The choice of communication mechanism also affects observability. Distributed tracing systems
(e.g., OpenTelemetry, Jaeger) must be implemented to trace transactions across service boundaries
and identify latency hotspots or failure points. In the context of financial auditing and compliance,
detailed trace logs become essential components of forensic analysis.

Moreover, integrating observability tools into the communication infrastructure allows for
proactive anomaly detection and adaptive service scaling [3]. Metrics such as request latency, error
rate, queue depth, and circuit breaker activations can be aggregated using platforms like Prometheus
or Datadog. These indicators help operations teams respond to degradations before they escalate into
full-scale outages, which is particularly crucial in high-assurance financial environments.
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To ensure end-to-end traceability, correlation identifiers (e.g., trace IDs, span IDs) must
propagate across all synchronous and asynchronous communication channels. Without consistent
metadata propagation, it becomes difficult to reconstruct distributed transaction chains-a significant
limitation in post-incident reviews or compliance audits.

Finally, communication resilience must be validated through chaos engineering practices.
Simulated failures such as delayed messages, dropped connections, or misrouted events help uncover
hidden dependencies and test fallback mechanisms in real conditions. Such proactive validation is
indispensable for achieving high availability targets (e.g., 99.99%) in financial ecosystems where
downtime equates to revenue loss and reputational damage.

Data synchronization and consistency through event-driven architecture

Ensuring consistency and synchronization across distributed services is one of the central
challenges in microservice-based financial platforms. Unlike monolithic systems, where data
integrity can be maintained through tightly coupled ACID transactions, microservice architectures
operate in an environment where each service manages its own data store and evolves independently.
This architectural decoupling introduces the risk of data divergence, which can be particularly
damaging in financial applications [4].

To mitigate this risk, financial systems increasingly rely on event-driven communication as the
foundation for achieving eventual consistency. Rather than invoking services directly in a tightly
synchronous chain, each service reacts to events published on a shared event bus, allowing for loose
coupling and asynchronous propagation of state changes. This approach decouples the execution flow
and eliminates blocking dependencies, improving system resilience and scalability.

In the context of financial transactions, services such as customer management, order
processing, payment authorization, and notification delivery operate independently but remain
logically coordinated through events. For example, an orders service may emit an OrderPlaced event,
which triggers downstream actions by the payments and notifications services. These services, in
turn, emit events like PaymentProcessed or NotificationSent, enabling other components to react
accordingly. This model supports auditability and observability while avoiding the complexity and
fragility of distributed locking or two-phase commits.

Figure 3 illustrates this architecture, where core domain services interact exclusively via an
event bus to exchange business-relevant events. Each module consumes only the events it subscribes
to, ensuring logical separation of concerns, operational independence, and traceable state transitions.
The architecture supports high-frequency financial workflows while maintaining consistency
guarantees under load.

Customer

Orders Payments

Notifications

\

Figure 3. Data synchronization in a microservice-based financial system using an event-driven approach
The architecture presented in figure demonstrates how event-driven communication enables
scalable and resilient data synchronization in microservice-based financial platforms. By decoupling
services and coordinating actions through a shared event bus, the system achieves eventual
consistency without relying on centralized transaction management. This design not only enhances
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fault tolerance and throughput under high load but also facilitates modular auditing, recoverability,
and compliance tracking-core requirements in regulated financial environments.

Security enforcement in microservice-based financial environments

Security is a critical concern in financial microservice architectures, where data flows across
numerous independently deployed services, often spanning cloud-based and on-premises
infrastructures. Unlike monolithic systems, where centralized security policies can be enforced more
easily, microservice environments demand distributed security mechanisms that are consistent,
scalable, and compliant with strict regulatory standards such as PCI DSS, PSD2, and GDPR [5].

A core principle in secure microservice design is the zero trust model, which assumes that no
service-internal or external-should be inherently trusted. All communication between services must
be authenticated, authorized, and encrypted, regardless of whether it occurs within the same data
center or across cloud boundaries. This is typically implemented through mutual TLS (mTLS) for
service-to-service authentication, combined with token-based authorization protocols like OAuth 2.0
and JSON Web Tokens (JWTs) [6].

Fine-grained access control is another critical component. Role-based access control (RBAC)
and attribute-based access control (ABAC) must be enforced at the service level to ensure that each
operation is only accessible to authorized users or services. Policy engines such as OPA (Open Policy
Agent) can be integrated to manage these rules declaratively and consistently across the architecture.

Furthermore, secrets management is essential to prevent credential leakage and unauthorized
access. Services must not embed credentials in source code or configuration files. Instead, secure
vaults (e.g., HashiCorp Vault, AWS Secrets Manager) should be used to manage dynamic secrets with
short lifespans and granular access scopes.

Monitoring and auditing mechanisms must also be embedded across the system. Every security-
relevant event-such as failed authentications, permission denials, or unusual request patterns-should
be logged and correlated through a centralized security information and event management (SIEM)
system. In regulated financial contexts, audit trails must not only be comprehensive but also tamper-
resistant and readily exportable for compliance review.

Finally, threat modeling and vulnerability scanning should be incorporated into the DevSecOps
lifecycle. Static and dynamic analysis tools (SAST/DAST), container image scanning, and
dependency checks ensure that vulnerabilities are caught before they reach production [7]. Financial
platforms must implement security as code, continuously validating the system’s resilience against
evolving threats and attack vectors.

Scalability and fault tolerance strategies in financial microservice platforms

In the context of financial operations, high availability and elastic scalability are not merely
desirable attributes-they are essential for maintaining service continuity, regulatory compliance, and
customer trust. MSAs inherently support these qualities through modular deployment and
independent scaling. However, realizing effective fault tolerance and scalability in production
requires a deliberate combination of architectural patterns, infrastructure tooling, and runtime policies
[8].

Horizontal scaling is a primary advantage of MSAs, allowing individual services to scale out
based on demand without affecting the rest of the system. Services responsible for high-frequency
operations-such as payment gateways, real-time fraud detection, or account lookups-can be deployed
across multiple replicas and managed by orchestrators like Kubernetes, which dynamically allocates
resources in response to system metrics.

To ensure fault isolation, services are typically deployed in separate containers or pods,
preventing failures in one component from cascading into others. Circuit breakers, timeouts, and
retries are implemented to detect and contain faults locally, while service meshes (e.g., Istio, Linkerd)
provide observability and control over traffic flow and failure recovery [9].

A complementary mechanism is graceful degradation, which ensures that non-critical features
can fail without compromising core functionality. For instance, if the notifications service fails,
payment confirmation can still proceed, deferring message delivery for later processing. Such design
decisions are vital for user experience and operational continuity during partial outages.
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The table 1 below summarizes key strategies for scalability and fault tolerance, along with their
respective benefits and trade-offs in financial systems.

Table 1
Scalability and fault tolerance strategies in microservice-based financial platforms
Strategy Purpose Implementation tools Trade-offs
Horizontal scaling |Increase Kubernetes, Docker|Resource cost, coordination
throughput Swarm complexity
Circuit breakers Prevent cascading|Hystrix, Resilience4j Requires tuning to avoid false
failures positives
Retry with backoff |Handle transient|Spring Retry, Polly May delay recovery in case of
faults real failures
Graceful Preserve core|Custom logic, fallback|Degraded UX, complexity in
degradation functionality responses failure mapping
Service mesh Control traffic and|Istio, Linkerd Added latency, increased
recovery configuration burden
Auto-scaling Elastic  resource| HPA, KEDA, AWS Auto|Dependent on accurate metrics
policies management Scaling

These strategies must be tuned to the specific needs of financial workflows, where real-time
response, regulatory auditability, and transactional accuracy cannot be compromised. Hybrid
approaches that blend infrastructure-level automation with domain-specific fallback logic offer the
most reliable path toward resilient and scalable systems.

While theoretical frameworks provide a foundation, real-world financial systems often rely on
hybrid resilience patterns that combine multiple mechanisms tailored to the business context. For
instance, a high-frequency trading platform may prioritize low-latency communication and local state
caching to maximize speed, while a digital bank may emphasize transactional durability and multi-
region failover to meet service-level agreements (SLAs).

In such systems, chaos engineering has become a vital practice for validating fault tolerance
under production-like conditions. By intentionally injecting failure scenarios-such as service
unavailability, network partitions, or delayed dependencies-teams can evaluate the effectiveness of
their fallback logic and alerting systems. This approach not only reveals architectural weaknesses but
also trains operational teams for incident response in high-stakes environments [10].

Another essential factor is observability-driven scaling. Unlike naive resource-based scaling
(e.g., CPU/memory usage), financial platforms benefit from behavioral indicators such as transaction
volume, fraud alert frequency, or latency spikes in specific flows. Integrating these business-level
signals into autoscaling triggers enables more intelligent and context-aware resource management,
reducing both cost and risk.

Finally, resilient financial architectures increasingly incorporate multi-zone and multi-cloud
deployments to avoid single points of failure. By distributing critical services across isolated failure
domains, systems can recover quickly from infrastructure outages or cloud-specific disruptions.
However, these setups require careful coordination of data replication, consistent configuration
management, and latency-aware routing.

Together, these practices enable financial microservice platforms not only to withstand
disruption but also to adapt dynamically under load-supporting real-time processing, continuous
uptime, and regulatory accountability in volatile operational environments.

Conclusion

The transition from monolithic systems to microservice architectures represents a paradigm
shift in the design of financial platforms, driven by the need for agility, scalability, and regulatory
alignment. While MSAs offer substantial advantages-including modular deployment, autonomous
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scaling, and enhanced fault isolation-they also introduce non-trivial challenges in service
coordination, data consistency, security enforcement, and operational resilience.

This paper has examined the critical architectural and operational considerations for
implementing microservices in financial systems. It has highlighted how domain-aligned
decomposition, hybrid communication models, event-driven consistency mechanisms, and
distributed security controls collectively form the backbone of resilient financial microservice
ecosystems. Additionally, the analysis underscored the importance of observability, failover
strategies, and real-world resilience practices such as chaos engineering and multi-cloud redundancy.

Successful adoption of MSAs in the financial sector requires more than technical reengineering;
it demands a holistic approach that aligns infrastructure design, business logic segmentation,
compliance needs, and runtime governance. By embracing hybrid strategies that balance performance
with auditability, and automation with domain sensitivity, financial institutions can build platforms
that not only scale under pressure but also maintain integrity, availability, and trust in increasingly
complex operational landscapes.
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Abstract

This paper investigates the application of graph databases for user behavior analysis,
highlighting their advantages over relational models in representing and querying complex interaction
patterns. Key aspects explored include data modeling techniques, query strategies using Cypher,
integration into analytics pipelines, graph algorithm use cases, and system performance comparisons.
Visual analyses and empirical benchmarks demonstrate the efficiency of graph-native operations in
behavioral contexts, particularly for multi-hop queries and influence modeling. The study also
addresses operational challenges and outlines emerging trends such as graph machine learning and
temporal graph modeling. The results support the adoption of graph databases as a core component
of intelligent, relationship-aware analytical systems.

Keywords: Graph databases, user behavior analysis, Cypher queries, graph algorithms, data
modeling, performance comparison, behavior analytics, temporal graphs.

AHHOTAIHUSA

B crarbe paccmarpuBaercsi mpuMeHeHHE TpadoBbIX 0a3 JaHHBIX JUIS aHATU3a MOBEICHHS
M0JIb30BaTeNeH U MOJUEPKUBAIOTCS X MPEUMYILECTBA NEPe PEISILIMOHHBIMHA MOJCTISIMH TIpU padoTte
C MHOTOCBSI3HBIMHU CTPYKTYpaMH B3auMojieicTBuil. [Ipoanann3upoBaHbl OIXOIbI K MOIECTHPOBAHUIO
JAHHBIX, peanu3anus 3ampocoB Ha s3bike Cypher, mHTErpamus B aHATUTHUYCCKUE MaWIIaiHBL,
pUMEHEeHHE TpaoOBBIX AITOPUTMOB M CPABHUTENIbHAS OIIEHKA MPOU3BOAUTENLHOCTU cucTeM. Ha
OCHOBE BU3yaJHM3alMi M 3MIUPUYECKUX TECTOB MoOKa3aHa 3()h(HeKTUBHOCTH rpadoBOro moaxoaa B
MOBEJICHYECKUX CIEHAPHIX, 0COOEHHO MpHU paboTe ¢ NIyOOKOH CBA3HOCTHIO M MOJCIMPOBAHHEM
BiIMsHUA. Takxke OOCYXKIAIOTCSl SKCIUTyaTal[MOHHBIE OrPaHMYCHHS W KIIIOYEBBIE IEPCIIEKTUBBI,
BKIIo4ass rpadoBoe MammHHOE oOOydeHHe u BpeMeHHble Tpadsbl. [lomyueHHBIE pe3yabTaThl
MOATBEPXKIAIOT Lienecoo0pasHocTh BHeApeHHs rpadoBsix CYBJl Kak OCHOBBI Ui MOCTPOCHUS
MHTEJUICKTYaJIbHBIX M OPUEHTHPOBAHHBIX HAa OTHOLICHUS aHATUTUYECKUX TUIATPOPM.
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KiaroueBbie cioBa: ['padoBbie 0a3bl JaHHBIX, aHAINW3 MOBEACHHS mNoib3oBareneld, Cypher-
3ampockl, rpadoBble aIrOPUTMBI, MOJCIMPOBAHHE JAHHBIX, CPAaBHEHHE MPOU3BOIUTEIHLHOCTH,
MOBEJICHUECKAs aHAJUTHUKA, BPEMEHHBIE rpadbl.

Introduction

In recent years, the exponential growth of digital interaction data has driven the demand for
more sophisticated tools to capture, represent, and analyze user behavior. Traditional relational
databases, while effective for structured and tabular data, often struggle to model the complex,
interconnected patterns inherent in user activity logs, social media footprints, and recommendation
systems. This limitation has led to an increased interest in graph-based data representations, where
entities and their relationships are treated as first-class citizens in the data model.

Graph databases (GDBs), such as Neo4j, Amazon Neptune, and ArangoDB, offer native
support for relationship-centric data structures, enabling efficient traversal and pattern matching.
Unlike relational models that rely heavily on joins, GDBs provide direct edge-based connections
between nodes, significantly reducing query latency when exploring behavioral paths or networked
interactions. These features make them especially suitable for applications involving user
segmentation, fraud detection, influence mapping, and personalization engines, where the semantics
of relationships are as critical as the attributes of individual users.

This paper aims to examine the practical application of graph databases in user behavior
analysis, focusing on modeling techniques, query strategies, and performance trade-offs. The study
compares graph-based and relational approaches using real-world datasets and demonstrates how
graph algorithms-such as community detection, centrality metrics, and path analysis-can extract
meaningful behavioral patterns. Through visual models, query examples, and benchmarking tables,
the paper outlines best practices for designing graph-powered analytical workflows in dynamic digital
environments.

Main part. Modeling user behavior data in relational and graph databases

Modeling user behavior requires not only capturing discrete user actions, but also representing
the relationships and dependencies between those actions. In relational database systems, this
typically involves multiple normalized tables and foreign key constraints, where joins are used to
reconstruct interaction histories. However, as the complexity and density of relationships increase-
such as in social graphs, clickstreams, or recommendation engines-the performance and clarity of
relational models degrade rapidly.

Graph databases offer an alternative paradigm in which users, actions, sessions, and resources
are represented as nodes, and the relationships between them (e.g., «clicked», «viewed», «followsy,
«purchased») are stored as edges. This structure allows for more intuitive modeling and enables
recursive traversal operations with significantly lower computational cost. Queries that would require
nested joins in SQL can often be expressed as short, expressive traversal patterns in graph query
languages such as Cypher or Gremlin [1].

The following table 1 summarizes the key conceptual and operational differences between
relational and graph-based approaches to user behavior modeling.

Table 1
Comparison of relational and graph database models for user behavior analysis

Aspect Relational model Graph model

Data structure Tables with rows and foreign keys|Nodes and edges representing entities
and relationships

Relationship Indirect (via joins) Direct (via edges)
representation
Query complexity High for multi-hop relationships |Low for recursive traversal
Performance with | Degrades with number of joins Stable with graph traversal
deep links
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Aspect Relational model Graph model
Schema flexibility Rigid, predefined schemas Schema-optional, supports
heterogeneous data
Use cases Transactional systems, structured|Behavioral analysis, recommendations,
tabular data social networks

This comparison illustrates that graph databases provide significant advantages in scenarios
where relationship depth and query flexibility are critical. As user behavior increasingly manifests in
multi-layered and temporal patterns, adopting graph-based models becomes essential for building
accurate, real-time analytics pipelines.

Graph query strategies for user behavior analysis

Graph databases offer powerful querying mechanisms that go beyond traditional filtering and
aggregation. User behavior analysis often requires tracing interactions across multiple degrees of
separation-such as identifying chains of content consumption, influence paths in social networks, or
anomalous navigation patterns. Graph query languages like Cypher (used in Neo4j) and Gremlin
(used in TinkerPop-based systems) provide native support for recursive traversals, subgraph pattern
matching, and graph algorithms-all of which are essential for behavioral insights.

One of the most common techniques is path traversal, used to identify the sequence of actions
taken by a user or to discover how different users are connected through shared interactions [2]. For
example, detecting a community of users who consistently follow similar purchase paths or
identifying influence chains in referral-based ecosystems. Graph databases can execute such queries
in linear time relative to path depth, while in relational systems this often results in multiple nested
joins and exponential growth in execution time.

Another frequent approach is the use of centrality metrics (e.g., PageRank, betweenness,
closeness) to identify the most influential users or sessions within a network. In behavioral contexts,
high-centrality nodes may represent key navigational hubs, referral generators, or fraudulent actors.
Similarly, community detection algorithms (e.g., Louvain, label propagation) help cluster users into
behaviorally similar groups for segmentation or targeting.

To highlight the performance advantage of graph databases for multi-hop queries, the figure
below compares the average query response times in a synthetic dataset as the relationship depth
increases from 1 to 6 hops. As shown in figure 1, while graph-based traversal scales linearly, relational
joins exhibit exponential degradation.
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Figure 1. Query response time by depth of relationship traversal in graph vs. relational database models
The results illustrated in Figure clearly demonstrate the scalability advantage of graph databases
for multi-hop relationship queries. As the traversal depth increases, the response time in relational
systems grows exponentially due to the compounding cost of join operations. In contrast, graph
databases maintain near-linear performance, enabling efficient exploration of deeply connected user
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behavior patterns. This characteristic makes graph-based models particularly suitable for real-time
behavioral analytics, where low-latency insights across complex interaction chains are required.

Graph algorithms for extracting behavioral patterns

Graph databases support a wide range of algorithms that can reveal latent behavioral structures
not easily accessible through traditional data analysis techniques. These algorithms enable analysts
to uncover user clusters, detect anomalies, evaluate influence, and optimize recommendation
strategies based on structural properties of the user interaction graph [3].

One widely used category is community detection algorithms, such as the Louvain method or
label propagation. These help to identify groups of users who exhibit similar behavioral trajectories-
visiting similar sequences of pages, reacting to the same content, or purchasing related products. Such
clustering is valuable for audience segmentation, personalization, and targeted marketing.

Another critical class is centrality algorithms, including PageRank, degree centrality,
betweenness, and closeness. These metrics quantify the importance of nodes within the network. In
behavioral contexts, central nodes may correspond to super-users, content hubs, or actors involved in
suspicious activity propagation.

Similarity and proximity algorithms, such as Jaccard similarity or personalized PageRank, can
identify users with shared interests or patterns, supporting collaborative filtering and social
recommendations. For anomaly detection, graph outlier detection methods identify structurally rare
patterns, such as unexpected edge density or users disconnected from typical interaction flows.

The table 2 below outlines common categories of graph algorithms, their primary goals, and
examples of behavioral analysis use cases.

Table 2
Graph algorithms for user behavior analysis
Algorithm type Primary goal Example use cases
Community detection Cluster users with similar|Segmenting audiences, recommending
behavior group-based content
Centrality metrics Identify influential nodes Detecting super-users, fraud hubs, or
key referrers
Similarity/proximity Find structurally similar users |Collaborative filtering, social
recommendations
Pathfinding/traversal Discover behavioral chains Navigation flow analysis, content
funnel optimization
Outlier detection Identify  anomalous  user|Fraud  detection, bot  activity
patterns identification

As summarized in table, graph algorithms provide a versatile analytical toolkit for modeling
and interpreting complex user behavior patterns. Each category of algorithms serves a distinct
purpose-ranging from identifying communities and influential users to detecting anomalies and
reconstructing behavioral paths. The ability to apply these algorithms directly within graph databases
enables real-time, relationship-aware analytics that traditional systems often struggle to achieve. By
selecting appropriate algorithms aligned with specific behavioral objectives, analysts can uncover
hidden structures, personalize user experiences, and improve decision-making in dynamic digital
environments.

Implementing behavior analysis using Cypher queries

Cypher, the declarative query language for Neo4j and other property graph databases, enables
analysts to describe complex patterns of user behavior in a concise and expressive way. Rather than
relying on cumbersome SQL joins, Cypher operates natively on node—relationship structures, making
it particularly effective for analyzing sequences, cycles, and multi-hop interactions.

In behavioral analytics, Cypher is often used to implement three major classes of queries: path-
based queries, structural ranking, and pattern discovery. Path-based queries are frequently employed
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to trace navigation flows, user conversion funnels, or repeated access loops [4]. Structural ranking is
useful for identifying high-impact users, such as referrers or hubs in content networks, while pattern
discovery is used for detecting suspicious behavior, churn indicators, or anomalous interaction
graphs.

The flexibility of Cypher allows analysts to combine conditions on both node attributes (e.g.,
user age, session duration) and relationship properties (e.g., frequency, time intervals), enabling fine-
grained filtering of behavior. This makes it a powerful tool for segmenting user groups based on
interaction types, recency, or cross-platform activity.

To better understand the practical use of Cypher in behavior analysis, figure 2 presents the
relative frequency of different query types across a sample of real-world graph-based analytics
workloads. The data illustrates that path queries dominate most use cases, followed by
influence/ranking queries, with anomaly detection and temporal pattern matching growing steadily
in adoption.

Temporal pattern matching

Community detection

y Anomaly detection

40.0%

Path-based queries Influence/ranking queries

Figure 2. Distribution of Cypher query types in user behavior analysis use cases

As shown in figure, path-based queries constitute the largest share of Cypher-based behavior
analysis workloads, reflecting their central role in tracing user navigation, conversion paths, and
repeated interaction sequences. Influence and ranking queries are also widely adopted, particularly in
use cases involving social graphs, referral systems, and recommendation optimization. The growing
use of anomaly detection and temporal pattern matching indicates a shift toward more predictive and
adaptive analytical approaches. This distribution highlights the flexibility of Cypher in supporting
both descriptive and advanced behavioral modeling tasks within graph databases.

Integrating graph databases into behavior analytics architectures

While GDBs provide a powerful foundation for modeling and analyzing complex user
interactions, their effective use in production requires seamless integration into broader data
processing and analytics pipelines. In contemporary data-driven environments, behavioral data is
typically generated across multiple systems-web logs, mobile applications, customer relationship
management (CRM) platforms-and must be aggregated, normalized, and enriched before meaningful
analysis can be performed. Integrating GDBs into this landscape demands careful orchestration of
data flows, performance tuning, and alignment with organizational data governance policies.

One of the most common integration patterns involves extract-transform—load (ETL) pipelines
that move behavioral event data from transactional sources into the graph store. Tools such as Apache
NiFi, Kafka Connect, and Neo4j’s own Data Importer enable automated ingestion of session logs,
interaction events, and user profiles. Preprocessing steps may include timestamp normalization,
deduplication, and enrichment with metadata (e.g., device type, location, user segment). A consistent
data model must be designed to accommodate both entity diversity and evolving relationship schemas
[5].

Once ingested, graph databases often operate alongside other analytical systems. Hybrid
architectures may combine GDBs for relationship modeling with columnar databases (e.g.,
ClickHouse, BigQuery) for high-speed aggregations or with document stores (e.g., MongoDB) for
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flexible session metadata storage. Business intelligence (BI) platforms can connect to GDBs via
Cypher or GraphQL interfaces, while machine learning (ML) workflows increasingly incorporate
graph embeddings and topological features derived from GDBs to improve model accuracy [6].

Despite these advantages, integration also poses challenges. Maintaining data consistency
across systems, ensuring low-latency synchronization, and managing schema evolution in dynamic
environments require ongoing architectural and operational effort. Additionally, access control,
auditing, and compliance constraints must be enforced across all interconnected components,
especially in industries like finance and healthcare.

Nonetheless, when properly integrated, graph databases significantly enhance the depth and
contextual quality of behavioral analytics, enabling systems that go beyond static segmentation
toward truly relational, adaptive, and intelligent user modeling.

Performance comparison of graph and relational databases in behavior analytics

Selecting the appropriate database architecture for behavior analytics is not merely a matter of
data modeling preferences-it directly impacts system scalability, query latency, and analytical
flexibility [7]. To evaluate this, a series of benchmark tests were conducted using representative
behavior analysis tasks, including multi-hop traversal, user influence detection, and session pattern
extraction. Both relational and graph database platforms were tested on equivalent datasets with
controlled dimensions.

The results consistently indicate that graph databases outperform relational systems in queries
involving deep relationship chains and structural computations. In contrast, relational databases
maintain an advantage in flat aggregations and predefined tabular reporting. The performance gap
widens with query complexity, especially as the number of joins in SQL increases beyond three or
four hops.

Figure 3 presents the execution time (in milliseconds) for five common behavior analysis tasks
executed in both relational and graph-based implementations. These include tasks such as detecting
returning user loops, calculating node centrality, and reconstructing behavioral paths. The data clearly
demonstrate the scalability advantage of graph systems as relationship complexity grows.
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Figure 3. Execution time comparison of graph and relational databases on behavior analysis tasks

As illustrated in figure, graph databases demonstrate significantly lower execution times across
all tested behavior analysis tasks compared to relational databases. The performance advantage
becomes more pronounced for structurally complex operations such as path reconstruction and
centrality ranking, where the relational model incurs substantial overhead due to join-based traversal.
This trend underscores the scalability and efficiency of graph-native querying, particularly in
scenarios involving multi-hop relationships and dynamic user interactions [8]. These results support
the adoption of graph databases as a more performant solution for behavior-centric analytical
workloads.
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Applications of graph-based behavior analysis in real-world systems

The practical applications of graph-based behavior analysis extend far beyond academic
experimentation. In commercial and operational environments, graph databases are increasingly
employed to power mission-critical systems that rely on understanding user intent, context, and
interaction history.

One key application domain is fraud detection, where relationship structures often reveal
collusive behavior or anomalous transaction flows. Graph models enable the identification of subtle
patterns, such as shared devices across multiple accounts or coordinated login sequences, which
would remain undetected in flat data representations.

Another major area is personalized recommendation systems, where user-to-user or user-to-
content graphs are leveraged to model affinities and co-engagement. Unlike traditional collaborative
filtering based on matrix factorization, graph-based methods capture contextual dependencies and
multi-step relationships (e.g., user — item — tag — user), enhancing recommendation accuracy and
explainability.

Customer journey mapping is also increasingly powered by graph analytics. By tracing paths
through digital touchpoints-websites, support interactions, app sessions-organizations can optimize
experience design and reduce churn. Graph traversals help reconstruct nonlinear, multi-session
behavior that conventional systems struggle to capture.

Finally, in the cybersecurity domain, graph analytics are applied to user activity graphs to detect
lateral movement, privilege escalation, and access anomalies, particularly in enterprise environments
with zero-trust policies. These use cases validate the robustness and adaptability of graph-based
approaches in behavior-centric decision-making systems.

Limitations and challenges of graph databases in behavior analysis

Despite their advantages, graph databases are not a universal solution. Their adoption in
behavior analytics comes with a range of limitations that must be considered when designing real-
world systems.

One key challenge is scalability under high-volume write operations. While graph traversal is
efficient for reads, ingesting large-scale behavioral logs in real time may require careful tuning,
partitioning, or even polyglot persistence approaches where ingestion is offloaded to stream
processors. Another issue is tooling maturity and standardization. While SQL is universally supported
and optimized across decades, graph query languages like Cypher, Gremlin, and GSQL still lack full
interoperability and may involve vendor lock-in. This can impact long-term maintainability and
ecosystem integration.

Query optimization in graph databases also requires graph-specific expertise. Traversals that
seem intuitive can become inefficient without appropriate indexing, cardinality management, or query
rewriting. Performance tuning demands an understanding of graph topology, data distribution, and
storage backend characteristics. Moreover, cost modeling and capacity planning are less predictable
in graph systems, particularly under highly dynamic workloads. Horizontal scaling strategies like
sharding remain more complex in graph databases due to their inherent reliance on relationship
locality.

Lastly, compliance and auditability pose additional concerns. Unlike relational systems with
mature logging and rollback mechanisms, ensuring consistent governance in GDB environments
requires custom implementation, especially when dealing with sensitive behavioral data under GDPR
or CCPA frameworks. Figure 4 provides a visual overview of the relative weight of these limitations,
based on expert evaluation and literature trends. The prominence of write scalability and tooling
immaturity underscores the importance of architectural readiness and operational planning when
integrating graph solutions into analytics workflows.
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Figure 4. Major limitations of graph databases in behavior analysis

The analysis presented in this section highlights that, while graph databases offer substantial
analytical advantages, their adoption introduces a distinct set of architectural and operational
challenges. As shown in figure, write scalability and tooling maturity represent the most prominent
concerns, especially in high-throughput or enterprise-grade deployments. Issues related to query
optimization, cost predictability, and compliance further underscore the need for specialized expertise
and robust infrastructure planning. These findings emphasize that graph databases should not be
viewed as drop-in replacements for traditional systems, but rather as complementary technologies
that require deliberate integration and governance strategies to deliver sustained value in user
behavior analytics [9].

Future directions in graph-based behavior analytics

As digital ecosystems continue to grow in complexity and scale, graph-based approaches to
behavior analysis are poised to play an increasingly central role in intelligent decision-making.
Emerging technological and methodological trends suggest several key directions for the evolution
of this field.

One prominent development is the convergence of graph databases and machine learning.
Techniques such as graph embeddings, graph neural networks (GNNs), and link prediction models
are enabling systems to move beyond explicit querying into predictive and prescriptive analytics. This
shift allows for more adaptive personalization, real-time fraud anticipation, and autonomous user
segmentation-particularly when graph representations are integrated into ML pipelines.

Another promising area is the adoption of temporal and dynamic graph models, which extend
static graphs with time-aware semantics. In behavior analysis, user actions are inherently temporal
and context-dependent. Dynamic graphs allow analysts to capture evolving relationships, detect
behavioral shifts over time, and correlate events across sessions, devices, or platforms.

Standardization of graph query languages is also likely to influence adoption. Initiatives such
as GQL (Graph Query Language) aim to unify diverse graph querying approaches (e.g., Cypher,
Gremlin, SPARQL) under a common standard, improving interoperability and reducing vendor lock-
in. This evolution will lower the barrier to entry and foster the integration of GDBs into mainstream
data platforms [10].

Lastly, graph-based systems are expected to become more tightly integrated with cloud-native
infrastructures. Serverless graph engines, streaming-compatible ingestion pipelines, and managed
GDB services will make it easier to deploy scalable, real-time behavior analytics at lower operational
cost.

These trajectories suggest that graph-based behavior analytics is not only a viable tool for
current challenges, but a foundational technology for the next generation of user-centric, intelligent
systems. Figure 5 presents a strategic outlook on key technological trends, showing how impact and
estimated adoption timelines vary across graph-centric innovations in analytics.
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Figure 5. Strategic projection of key trends in graph-based behavior analysis

The visualization in figure highlights the rising importance of Graph ML and cloud-native
architectures, with both expected to exert high impact on behavioral analytics within the next few
years. Temporal modeling and streaming integration are also gaining traction as organizations seek
real-time, context-aware insights [11]. The relatively earlier maturation of standardized query
languages suggests that ecosystem interoperability will play a foundational role in enabling these
advanced capabilities. Collectively, these trends point toward an increasingly intelligent, adaptive,
and event-driven analytics paradigm grounded in graph technologies.

Conclusion

The use of graph databases for user behavior analysis represents a significant advancement in
the modeling and interpretation of complex, relationship-driven data. Unlike traditional relational
systems, graph databases enable native traversal of interconnected behavioral entities, allowing for
more intuitive and efficient querying of user paths, influence networks, and temporal patterns. This
advantage is particularly evident in multi-hop queries and dynamic interaction scenarios, where
relational models face performance and modeling limitations.

Throughout the study, key aspects of graph-based behavior analytics were examined, including
modeling strategies, query techniques, graph algorithm applications, integration into analytical
pipelines, and performance comparisons. The empirical results and visualizations confirm that graph
databases consistently outperform relational systems in structurally complex analytical tasks,
providing both scalability and analytical depth. At the same time, several practical limitations-such
as write scalability, query complexity, and compliance concerns-highlight the need for careful
architectural planning and operational maturity.

Looking ahead, the convergence of graph technologies with machine learning, temporal
modeling, and cloud-native infrastructure suggests a promising future for behavior analytics. Graph-
based systems are well positioned to become a core component of next-generation intelligent
platforms, supporting adaptive, real-time, and context-aware decision-making across industries. The
findings presented in this paper contribute to a deeper understanding of how graph databases can be
leveraged to extract value from behavioral data and support the design of resilient, user-centric
analytics architectures.
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AHHOTaNUA

B crarbe paccmarpuBaercss mpoOiieMa YCTOHUMBOCTH  HEHpOCETEeBBIX MoAaened K
1esieHanpanieHHbIM (adversarial) arakam B MeMIMHCKUX cucTeMax. [IpoaHanu3upoBaHbl OCHOBHBIE
apXHUTEKTYpHl, IPUMEHAEMbIC B 3aJa4axX KJIACCH(PHKALNUN MEIULIMHCKUX M300paXeHUH M aHaIu3a
OMOCHUTHAJIOB, C TOUYKH 3PEHHS UX YSA3BHUMOCTH K Pa3lIMYHBIM TUNaM atak. [IpencTaBieHbl METObI
MOBBIIIEHUST poOacTHOCTH, BKitodasi adversarial training, distillation u mpenoOpaboTKy BXOAHBIX
JaHHBIX, a TaKkXke OOCYXIAIOTCs CIOCOOBl JETEKTUPOBAHMS arak C  HCIOJIb30BaHHEM
BCIIOMOTaTeIbHbIX Mozesen. [logu€pkuBaeTcs 3HAUMMOCTh KOMILJIEKCHOIO IIOAXOAA K 3alluTe
MequuuHckux M-cucreM ¢ y4€TOM BBIYMCIUTEIBHBIX U KIMHUYECKUX ONPAHUYCHUMN.

KiroueBble ciioBa: HeiipoceTu, IeJICHANpaBIeHHbIE aTaKh, pOOaCTHOCTh, 3aIllUTa MOJEINeH,
MEIULMHCKUE N300pakeHus], NCKYCCTBEHHBIN MHTEIUIEKT, OMocurHainsl, adversarial training

Abstract

The article addresses the issue of neural network robustness against adversarial attacks in
medical systems. It analyzes common architectures used in medical image classification and biosignal
analysis in terms of their vulnerability to various types of attacks. Several robustness enhancement
methods are presented, including adversarial training, distillation, and input preprocessing. The use
of auxiliary models for attack detection is also discussed. The study highlights the importance of a
comprehensive protection strategy for medical Al systems, considering both computational and
clinical constraints.

Keywords: neural networks, adversarial attacks, robustness, model protection, medical
imaging, artificial intelligence, biosignals, adversarial training.

Brenenue

CoBpeMeHHbIE METUIIMHCKHE WH(POPMAIIMOHHbBIE CUCTEMBI BCE Yallle UCIOIb3YIOT aJTOPUTMBI
ri1yOoKOro oOyueHHs! UIsl TMarHOCTUKU 3a00JIeBaHN, HHTEPIIPETAllul H300paXKeHUH U TOAEPKKU
KIMHUYECKUX pemeHnit. OcoOeHHO MUPOKOe pacpoCTpaHEeHUE MOTYUHIN HEHpOceTeBbIe MOICIH,
JEMOHCTPHPYIOIIUE BBHICOKYIO TOUHOCTh B 33Ja4ax KJIacCU()UKALUU U CETMEHTAIIMH MEIUIIUHCKIX
n3o0paxkennit. OpHAKO BMECTE C POCTOM HMX NPUMEHMMOCTH BO3pPAaCTaeT M YSA3BUMOCTh K
ceun(pUIecKuM THIaM aTak, Cpelid KOTOPHIX 0COOYIO Yrpo3y MpelCTaBISAIOT IeJieHANpaBIeHHbIC
(adversarial) BmemarenbctBa. Takue araku, opmMupyemple NyTéM MHUHHMAJIBHBIX, 3a4acTylO
HE3aMETHBIX Ul YeJIOBEKa MCKAKEHUH BXOIHBIX JAHHBIX, MOTYT CYIIECTBEHHO U3MEHHUTH BBIBOJ
MOJIENIH, YTO KPUTUYHO B YCIOBUSIX KIMHUYECKON MPAKTUKU.
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B ornmume OT TpaaMIMOHHBIX aTak, LEJICHANpPaBICHHbIE BMEIIATEIbCTBA HAllEJEHbl Ha
HKCIUTYyaTaluI0 CIIA0ObIX MECT apXUTEKTYpbl HEMPOCETH C IENIbI0 M3MEHEHHs €€ MOBEJeHUSA. IJTO
CO3MAET PUCKU KaK JUIsl JOCTOBEPHOCTHU JMArHOCTUYECKHMX pPEIICHHH, Tak U Juii 0e30macHOCTH
MAIMEeHTOB, OCOOEHHO B AaBTOMATHU3MPOBAHHBIX WM JUCTAHIIMOHHBIX CICHAPHSIX OKa3aHUs
MeaunuHCKoU momontn. [IpoGiema ycyryOisercst TeM, 4To OOJNBUIIMHCTBO CYLIECTBYIOIIUX CUCTEM
HE BKJIIOYAET MEXaHU3MOB aKTUBHOM 3aIIUTHI OT TAKUX YIPO3, & CAMU MOJEIH YyacTo odyydatorcs 0e3
yu4éTa NOTEHIMAIBHBIX aTaKyIOUIMX cTparerui [1].

Lenbro HacTosImIEeH pabOTHI SIBJISIETCS CUCTEMAaTHYECKUN aHAIN3 YCTOMUYNBOCTH HEUPOCETEBBIX
MOJZIENEH, HCHOIB3YEMBIX B MEAMLUMHCKHX CHCTEMaxX, K LI€JCHANpaBlICHHBIM arakam. B
HCCIIEIOBAaHUM PAacCMaTPUBAIOTCS CYLIECTBYIOIIME IOAXOAbl K TOCTPOEHUIO 3allUIIEHHBIX
apXHUTEKTyp, METOJbl TOBBIIICHUS POOACTHOCTH MOJENEH, a TaKKe CTpaTeruu OOHApyKEHUs U
Heirpanuzanun adversarial-npumepoB. OTaenbHOE BHUMaHHUE YAETSETCS MPUMEHUMOCTH JaHHBIX
pelIeHHii B KIMHUYECKOM KOHTEKCTE, I/Ie IIeHa OITHOKHA MOXKET OBITh YpE3BBIYAHO BBHICOKOIA.

OcHoBHas 4yacTh

Yrpo3sl nejieHANPaBJICHHBIX ATAK B MEANIMHCKUX HelipoceTeBbIX CHCTEMAX

C  yBenMYEeHHEM  MHCIOJIB30BAaHUS  HEUPOCETEBBIX  AJITOPUTMOB B MEIULUHCKUX
MH(POPMALMOHHBIX CHCTEMaX BCTAa€T BONPOC MX YCTOMYMBOCTH K BHEIIHHUM BO3JIEHCTBHSIM, B TOM
YHCJIe - K LIeJICHANPaBICHHBIM aTakaM. B MEAMIIMHCKOM KOHTEKCTE JaHHbIE aTakKi 0COOEHHO OMACHBI,
MOCKOJIBKY ~ MOTYT TPHBECTHM K JUarHOCTUYECKHMM  OLIMOKaM, TMOApPBIBY JOBEpHS K
aBTOMATH3MPOBAHHBIM CHUCTEMaM M MPSIMOMY PUCKY JUIS JKU3HU MAaLMEHTOB. ATakd MOTYT OBITh
HamnpaBlieHbI KaK Ha BU3yalbHbIC NaHHBIC (peHTreHoBckue cHuMku, MPT, KT), Tak u Ha TabnuuHbIe
WIM CUTHAJIBHBIE MEIUIIMHCKUE JTAaHHBIE, YTO JIENAET UX YHUBEPCAJIbHBIM MHCTPYMEHTOM IOJPbIBA
LETIOCTHOCTH PEIlIEHU Ha 0a3e UCKYCCTBEHHOTO MHTEIUIeKTa [2].

IlenenanpaBieHHble aTakd B MEIULMHCKUX 33JadyaX OTIMYAIOTCA OT aHAJIOIMYHBIX
BMEIATENILCTB B JAPYruX cdepax CBOCH CIOKHOCTbIO W TMOTCHUUAIBHBIMUA TOCIEICTBUIMH.
Hanpumep, MuUHMMalIbHbIE U3MEHEHHUS B CTPYKTypE CHHMMKa JIETKUX, BHECEHHBIE HAa YPOBHE
MUKCeNeil, MOryT ObITh TOCTaTOYHO JJISi TOTO, YTOOBI MOJENb U3MEHMIIA KIACCU(PUKALIUIO «310POB»
Ha «ITHEBMOHMS» WM HaoOOpoT. Takue MaHMUMYNIALMU YacTO HE3aMETHBI JaXKe JUIS OIBITHOTO
CTELUAINCTA, TTOCKOJIBKY COXPAHSIOT BU3YaJIbHYIO MIPABIONOJO0HOCT. DTO JeNaeT TpaJAulliOHHbIC
MOIXO/IbI K BEpU(PHUKALUY HA OCHOBE BU3YaJIbHOTO aHAJIN3a HEIOCTATOYHBIMH.

PaznuuaroT HECKOJIBKO BUJIOB 1I€JICHAIIPaBICHHBIX aTak: aTaku B 0esoM simuke (white-box),
IIPU KOTOPBIX aTaKyIOIINA HMEET TOCTYII K apXUTEKType U BECAM MOJIENIN; aTAKH B YEPHOM SIIIUKE
(black-box), riae nocTynm orpaHu4eH TOJIBKO BXOJHBIMH M BBIXOAHBIMH JAaHHBIMH; a TakKXKe
nepeHocumble (transferable) arakm, crnocoOHble paboTaTh Ha pasHBIX MoAeIsIx 0e3
JIOTIOJIHUTENBHON ajantanuu. Bce 3TH ClieHapuu akTyalbHbl B YCIIOBUSIX pacIpelelEHHbIX
MEIUIIUHCKUX CUCTEM, IJIe MOJENU Pa3BEPTHIBAIOTCS B OOJIAUHBIX Cpelax WM Ha nepudepuifHbIx
ycrpoiicTBax. Takum oOpa3oM, aHAIH3 YCTOMYMBOCTH MOJIENEH K TAKUM BO3JICHCTBHUSIM CTAaHOBHUTCS
HEOOXOIMMBIM 3TAINlOM IPU BHEIPEHUHU HEHPOCETeH B 37JpaBOOXpaHEHHE.

CpaBHHUTe/IbHBIH AHAJIH3 YSI3BHMOCTH HeHpOceTeBBbIX Mojesell K IeJeHANPABICHHBIM
arakam

PasnuuHble  apXUTEKTYpbl HEHWpPOCETEH, HCIONb3yeMble B MEIULMHCKUX  3aJadax,
JEMOHCTPUPYIOT HEOJUHAKOBYIO CTENEHb YCTOWYMBOCTH K I€JCHANpPABICHHBIM arakam |[3].
Haubonee ys3BHUMBIMH, KaK MPaBUIIO, SBISAIOTCS TIyOOKue cBepTouHble HelpoHHbIe ceT (CNN),
IpUMEHSeMbIC B aHaJIM3e N300paKeHUH, B TO BpeMst Kak 0oJiee KOMIIAKTHBIE U CIIEIUATM3HPOBAHHBIC
apXUTEKTYpbl, OOyYEHHbIE C TPUMEHEHHEM METONOB PETYIApPU3AlMU M 3aIIUTHI, MPOSBISIOT
OTHOCUTEIIBHO OOJBIIYI0 yCTOWYMBOCTB. [IpoBeAEHHBIN 0030p MO3BOJISET BBLACTUTH KIIIOUEBBIC
XapaKTePUCTUKH, BIUSIONINE Ha BOCTIPUUMUYNBOCTD MoZIeNH K adversarial-npumepam: riryOMHa CeTH,
HaJIMYMe MEXaHU3MOB HOPMAJIM3aLUH, TUIl (DYHKIIMN aKTUBAILIUH, a TAK)KE UCTIOJIb3yeMas CTpaTerus
o0y4eHHsI.

B Tabmuume 1 mnpeacraBieHO cpaBHEHHME HauwOoilee pacHpOCTPaHEHHBIX —apXHUTEKTYD,
IIPUMEHSIEMBIX B MEAMIIMHCKUX CHUCTEMAaX, C TOUKH 3PEHHUSI UX YCTOMUMBOCTH K Pa3IMYHBIM BUAAM
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arak. B cpaBHEHHH YYHTHIBAIOTCS TAPAMETPBI APXUTEKTYPHI, TUIT UCIIOIB3YEMbIX BXOTHBIX JaHHBIX,
XapakTep aTakK U THI PEaKIUU MOJICIIH.
Tabmumna 1
YCTONYHUBOCTh TOMYISPHBIX HEUPOCETEBBIX APXUTEKTYP K LIEJICHANPABICHHBIM aTakaM B
MEIUIIMHCKUX 3a7adax

ApxurtekTypa Tun naHHbIX U 00J1aCTH YCcToH4YuBOCTDL K aTaKaM M yA3BUMOCTH
NPUMEHEHHU S
ResNet-50 Menumuackrne u3o0paxenus; | Huskas ycTOHYMBOCTD K aTakaM B OJIOM SIIIKKE,
HCIIONb3YETCS JUIS | CpelHsIE yCTOMYMBOCTH B UYEPHOM, BBICOKAS

nuarHoctuku no KT u MPT YA3BUMOCTbD K IIEPEHOCUMBIM aTaKaM

DenseNet-121 | Menununckue u3o0Opaxenus; | CpenHssi yCTOHYMBOCTh K OeloMy M 4E€pHOMY
IIPUMEHSIETC TpU  aHaJIM3€ | SIIUKY, YMEPEHHAs YA3BUMOCTb K IEPEHOCUMBIM
pPEHTTeHOTrpamMm aTakam

EfficientNet-B0O | Menunuackue u3oOpaxenus; | CpenHsisi yCTOMUMBOCTE K aTrakaM B OeloM
>pdexTHBHA B  MOOWJIBHBIX | IIMKE, BBICOKAas - B UEPHOM, CpEaHsA
pELICHHUSIX CKPUHUHTA YSI3BUMOCTbH K IIEPEHOCHMBIM aTakaM

LSTM buomennuuHckue BpeMeHHBbIE | BpicOKass yCTOMYMBOCTH KO BCEM BHAAM aTak,

pAIbL; OpPUMEHSIETCS IS | OCOOCHHO Ha/IE)KHA MPOTHB MEPEHOCUMBIX aTaK
ananu3a DK u 90T

TabNet TaGnuunble KJIMHUYeckHe | Beicokass  ycroilumBocTh B 0OelioM  SIIIMKE,
JaHHBIC; WCHONB3YETCS JUIA|CpedHsisi - B 4YEPHOM, HU3Kas YsI3BUMOCTh K
OLIEHKU METUIIMHCKUX PUCKOB |IIEPEHOCHUMBIM aTakaM

CpaBHUTENBHBIN aHAJIN3 TIOKA3bIBAET, YTO YCTOWYMBOCTh MOJIEIH MOXKET OBITh CYIIIECTBEHHO
MOBBIIIIEHA 3a CYET BHIOOpAa COOTBETCTBYIOLICH AapXWUTEKTYphl, a TaKXe IpH HCIOIb30BaHUN
aJlanTHPOBAaHHBIX K 3a/au€ METOAOB 3amuThl. OIHAKO YHHMBEPCAJIBHBIX PEUICHUH, MOIHOCTHIO
YCTPaAHAIOMUX YTPO3y IIeJCHANPABICHHbIX aTaK, Ha JaHHbII MOMEHT HE CYIIECTBYET, YTO
MOJYEPKUBAET HEOOXOAMMOCTh KOMIUIEKCHOTO TMOAXOJa NpPU TNPOEKTHPOBAHMM OE30MacHbIX
MEIUIIUTHCKUX CHCTEM.

Metoabl mNOBBINIEHUSI POOACTHOCTH HelpoceTeBbIX MoJedeid B MeIMIMHCKHX
NPUHJIOKEHUSAX

C y4€ToM BBICOKOW UYBCTBUTEIHHOCTH MEIMIIMHCKUX CHUCTEM K LIEJICHANPABICHHBIM aTakaM
CTaHOBUTCSI HEOOXOIUMBIM BHEAPEHHE MEXaHU3MOB, 00ECIIEUYMBAIOIIMX YCTOWYUBOCTh HelipoceTe
(pobactHOCTh) 0Oe3 ymiepba nans WX JOUATHOCTHYECKOW ToyHOcTH. OpHuM w3  Hambolee
pacrpocTpaH€HHBIX TOAXOMOB siBsieTcs adversarial training - oOy4yeHue MoJeNnu Ha MPUMEpPaXx,
COZIepIKaIllMX 3apaHee creHepupoBaHHble adversarial-uckaxxeHust. OTOT METOA MO3BOJISICT TOBBICUTh
YyBCTBUTEIBHOCTh HEMPOCETH K aHOMAJIUAM M cPOpMUpOBaTh Oojee yCTOMYMBOE MOBEACHUE NPU
BCTpEUYEe C arakymomuMmMu BxogamMu. OJHAaKo [aHHasg CTpaTerdus TpeOyeT 3HAYMTENIbHBIX
BBIUUCIIUTENIEHBIX PECYPCOB M MOXKET CHIDKATh 0000IAIONIYIO CIIOCOOHOCTH MOJIEIIH.

JIpyriuM HampaBlIeHHEM 3aIllUTHI SBISAETCS BHEAPEHUE apXUTEKTYPHBIX MOAM(HUKALNKN, TAaKUX
kak 3amuTtHble ciou (defensive distillation), HOpMmanmM3amMs NOPU3HAKOB U PETYISAPU3ALMS,
yMEHBIIAoasi YyBCTBUTEIBHOCTh MOJEIHM K JIOKAJIBbHBIM BO3MYIICHUSM. Taike MPUMEHSIOTCS
METO/IbI CTOXaCTUYECKOM aKTHUBALIMU U 0OpE3KH (pruning), yMEHBIIAOUIHE CII0KHOCTh MOJEIIU U TEM
CaMbIM - €€ BOCIIPUMMYHUBOCTh K MAaHUITYJSAIHIM. [1oX01b1 Ha OCHOBE HEPreTHUECKUX (PYHKIHMHA 1
031ieCOBCKHX MO/IeNieii O3BOJISAIOT IOTIOJIHUTEIBHO YUUTHIBATh HEONPEAECIEHHOCTD B IPOrHO3aX, YTO
0COOEHHO aKTyaJlbHO B KIMHHUYECKHUX YCIOBHAX, TA€ TpeOyeTcs BBICOKAs HHTEPIPETHPYEMOCTh
peuieHui.

Kpome TOro, pactér mHTEpec K MeToJaM MpeIBapUTEIbHON 0O0pabOTKH BXOAHBIX JAHHBIX,
KOTOpBIE TIO3BOJIIIOT HHUBEIUPOBATH MM YIAIATh MOTEHIMAJIbHBIE MCKAXECHUS OO0 I0Aa4u
uHpOpMaLMUM B MoOJeNb. Takue METoAbl BKIIOYAIOT (UIBTPALMIO IIYMOB, HOPMAJIM3ALUIO
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n300pakeHni, a Takxke npeoOpa3oBaHus, ycroiunBble K adversarial-agpdexram (Hanpumep, JPEG-
KOMITPECCHUSI WIH Cily4aiiHoe MacimrabupoBanue) [4]. COBOKYMHOCTh MEPEYUCIICHHBIX CTPATErHid
(dbopMHpyeT OCHOBY KOMIUIEKCHOTO MOIX0a K 00€CIIEYeHNI0 POOACTHOCTH HEHPOCETEBBIX PELICHUH,
Heo0X0MMOro TIpu pa3paboTke HAAEKHBIX MEAUIIMHCKIX CUCTEM.

O030p MeTO10B 3alIIUTHI OT eJIEeHANPABJEHHBIX ATAK B MEAMLMHCKUX HellpoceTsax

3amuTa HelpoceTel OT HeJeHANMPABICHHBIX aTaK B MEIUIMHCKUX TPHUIIOKCHHSIX MOXKET OBITh
peanu3oBaHa Ha PA3IMYHBIX YPOBHSX - OT APXHTEKTYPHOU MOIAMQUKAIUU MOJeNei O METOJO0B
00pabOTKU JAaHHBIX U MEXaHH3MOB OOHapykeHus: aHoMamnuii [5]. KaxkIblil 13 mMoaxo0B UIMEET CBOU
MPEUMYIIECTBA M OTPAHUYCHHS B 3aBUCUMOCTHU OT CICU(DHUKYU 33]]a4¥, BEIYUCITUTEIHHBIX PECYPCOB
U ypOBHS JOMYyCTHMOTO PHCKA. B yCIOBHSX 3IpaBOOXpaHEHHs] OCOOCHHO aKTyalbHBI METOIBI,
CIOCOOHBIE 00ECIeurnBaTh HHTEPIPETUPYEMOCTh PEIICHUH M HE HapylIaTh JOBEPHE CO CTOPOHBI
Bpaudei.

B Ttabmuue 2 mpencraBieHbl OCHOBHBIC KAaTETOPUHU 3alIUTHBIX METOIOB C YKa3aHHEM HX
MPUMEHUMOCTH B MEAMIIMHCKHUX CIICHAPUSAX, BBIYUCIUTEIHHOW HATPy3KHM W YCTOWYMBOCTH K
Pa3IMYHBIM THUIIAM aTaK.

Tabmuma 2
CpaBHEHHE METOJIOB 3alIMThI HEHPOCETEH OT IeJICHANPABICHHBIX aTaK B MEUIIMHCKHIX 3a1a49ax
MeTtoa HpuHumn geiicTBus IIpuMeHUMOCTH B MeAULIMHE
3aLUTHI

Adversarial Hcnonp3oBanne MCKaKEHHBIX NMPUMEPOB B | Bbicokas, HO TpeOyeT 3HAUYUTEIbHBIX
training 00y4YeHHH JJIS1 YCTOWYMBOCTH MOJIEIN BBIYHCIIUTEIBHBIX PECYPCOB
Defensive CHmwKeHue 4YyBCTBUTENBHOCTH  Mojenu | CpeqHsis, CHIDKAeT
distillation 4yepes3 CIVIaKMBAaHUE BBIXOJI0B 4yBCTBUTEIBLHOCTb MOJIETHN
Feature VYnanenne 1mymoB W yMmeHblueHue | Cpenusisi, 3¢pdekTuBHa B YCIOBHUSIX
squeezing BapUaTUBHOCTH MPU3HAKOB OrpaHUYEHHBIX PECYPCOB
Input [IpenBaputenbHas ¢GuiIbTpanus BXOMHBIX | Beicokas, NOAXOIUT s
preprocessing | AaHHBIX ¢mipTpanum apredakToB
Randomized |Mcnonb3oBanue ycpenHénHbIx | Cpennss, Oananc MEXIY
smoothing npeAcKa3aHuil MoIenu HaJE&XKHOCTBIO U 3aTpaTaMu
Bayesian MopenupoBanue HeonpeaenénHoctu | Cpenuss, [IOBBIIIAET
networks BBIXOJIHBIX 3HAYCHUN MHTEPIPETHPYEMOCTh PELICHUI

Tabnuia 1eMOHCTPUPYET, UTO HU OJUH U3 MTPECTABICHHBIX METO0B HE 00eCIeYBAET MOTHON
YCTOMYMBOCTH KO BCEM THIAM aTak 0e3 JOMOJHUTENbHBIX 3arpar. Hambonee >pQeKTHBHBIM B
YCIIOBHAX aTaK C IMOJHOW OCBEAOMIIEHHOCTBIO 00 apXUTEKType MOJIENTH OCTaéTCsi MeTo ] 00yUeHHUs Ha
UCKa)XEHHBIX JTaHHBIX, OJHAKO OH TPeOyeT 3HAYMTENbHBIX BBIYHCIUTEIBHBIX pecypcoB. MeTossl
NpeIBAPUTEIBLHON OOpaOOTKM BXOAHBIX JAHHBIX W CHIKCHHE UYBCTBUTEJIBHOCTH K MIyMY
obecrieunBatoT 0a30BbII YPOBEHB 3aIUTHI IPH HU3KOH Harpy3ke Ha cuctemy. I1oaxoibl, OCHOBaHHBIE
Ha BEPOSTHOCTHBIX MOJENSX, MPEACTABISIOT HMHTEPEC C TOYKH 3PEHUS  IOBBILICHUS
MHTEPIPETUPYEMOCTH PE3YJIbTaTOB M OLEHKH JOBEpUs K IMPOTHO3aM, YTO OCOOEHHO BaXXHO B
MEIMIMHCKHUX 3a7a4ax. TakuM o0pa3oM, BEIOOP METOAA 3alUTHI JOJKEH ONMMUPAThCS Ha XapakTep
KJIMHUYECKOH 3a/1auu, TOCTYIHbIE PECYPChI U JIOIYCTHMbIH YPOBEHb PHCKA.

JleTeKTHpPOBaHUe LeJEHANPABIEHHbIX aTaK € MCHOJb30BAHHEM BCIIOMOIaTebHBIX
Helipocerei

OnHUM U3 MEPCIEKTUBHBIX HANpaBlIeHUI 00ecieYeHNsl YCTOMYUBOCTH METUIIMHCKUX CUCTEM
Ha Oase HeipoceTell SABIAETCS CO3JJaHWE BCIOMOTATENbHBIX JETEKTOPOB, CIIOCOOHBIX OTIMYATh
HOpMaJIbHBIE BXOJAHBIE JaHHble OT adversarial-mpumepoB. Takue aeTeKTOpel 00ydaroTCs
napajuieIbHO C OCHOBHOM MOJENbI0 M MOTYT (PYHKIMOHHpPOBATh Kak (UIBTp Ha JTarme
npenoOopaboTKy J100 KaKk KOMIOHEHT CUCTEMBI IPUHATHS peleHuid. [IpernMyIiecTBo 3Toro noaxonaa
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3aKJIIOYAeTCsl B BO3MOXKHOCTM aJanTalii K pa3IMyHbIM THUIAM arak 0e3 HeoOXOIuMOCTH
Momudukanuu 6a3oBoi Mozaenu [6].

B kauecTBe WIUTIOCTpaLMU MPUBOAUTCS (PparMeHT koga Ha Python, peanmusyromuii getekrop,
oOy4yaeMblii Ha TPU3HAKAX CKPHITOTO CJIOSI OCHOBHOW HeilpocereBoil mMopenu. s mocTpoeHus
npuMepa ucnonbiyercs ¢pperimBopk PyTorch u ynpoménnsiii naracer.

import torch

import torch.nn as nn

import torch.optim as optim

from torchvision import datasets, transforms, models
from torch.utils.data import Datal.oader, random_split

# 3arpyska u TpaHC(OPMAIHS JTaHHBIX
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
D
dataset = datasets.FakeData(transform=transform) # nns npumepa; B menuiuHe: nzodpaxenuss MPT,
KT u np.
train_set, val set = random_split(dataset, [800, 200])
train_loader = Datal.oader(train_set, batch size=32)
val loader = DatalLoader(val_set, batch_size=32)

# [IpenoOyuennast monens (ResNetl8) B kauecTBe IKCTpaKTOpa MPU3HAKOB

resnet = models.resnet18(pretrained=True)

resnet.fc = nn.Identity() # yOupaem knaccuukaTop, MOIydaeM BbIXOJ CKPBITOTO CIIOS
resnet.eval()

# JletexTop aHOManuii (Ha BBIXOJaX CKPBITOTO CJIOS)
class Detector(nn.Module):
def init (self, input dim=512):
super(Detector, self). _init ()
self.classifier = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Linear(128, 2) # 0 - uncTsrit mpumep, 1 - adversarial
)
def forward(self, x):
return self.classifier(x)

detector = Detector()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(detector.parameters(), [r=0.001)

# O0yueHue neTeKkTopa
for epoch in range(5):
detector.train()
for inputs, _ in train_loader:
with torch.no_grad():
features = resnet(inputs)
labels = torch.randint(0, 2, (inputs.size(0),)) # umuTanus: ciydaiiHas pa3MeTKa (3aMEHHUTH Ha
peabHbIC METKH)
outputs = detector(features)
loss = criterion(outputs, labels)

optimizer.zero_grad()
loss.backward()

Ne 2/2025 Journal «Professional Bulletin. Information Technology and Security» 70



The scientific publishing house «Professional Bulletin»

optimizer.step()
print("O0yueHnue 3aBepiieHo.")

OTOT KO AEMOHCTPHpPYET 0a30BYI0 apXHUTEKTYypy BCIIOMOIATENIbHOW MOJEIH-AETEKTOpa,
oOyuaroleiics Ha BBIXOAAX CKPBITOTO CJIOS OCHOBHOTO Kiaccudukaropa. B peanbHbIX MEAUITMHCKIX
3amagax BMecto FakeData crmemyer ucmonb3oBaTh peanbHble naraceTsl (Hampumep, CheXpert,
BraTS), a meTku 1omxHbI oTpaxats hakt Hanuuus adversarial-uckaxenuii. Takoit moaxo mo3BossieT
MOBBICHTH YCTOWYMBOCTh CUCTEMBI 0€3 NepepadOTKU BCEil apXUTEKTypHI [7].

OrpannyeHusi ¥ NepPCHEeKTHBBI HCIIOJIb30BAHUSI POOACTHBIX HelpoceTell B MeAUIIMHCKUX
cucTemMax

HecmoTpst Ha akTUBHOE pa3BUTHE METOIOB 3aILMTHI HEUPOCETEN OT LEICHAIPABICHHBIX aTaK,
UX MHTETpalnysi B MEIULMHCKYIO IIPAKTHKY COIPOBOKIAECTCS PsioM orpaHuueHuil [8]. OgHum u3
IJIaBHBIX MPEIATCTBUN OCTAETCA KOMIIPOMHUCC MEXAY YCTOWYMBOCTBIO M TOYHOCTBIO MOJIEIH.
[ToBbIieHue poOACTHOCTH HEPENKO MPUBOIUT K CHIDKCHHUIO JMArHOCTUYECKONW UyBCTBUTEIBHOCTH,
YTO KPUTHYHO B 33j[a4ax paHHETO BBIABICHUS 3a00eBaHuil [9].

JIpyruM Ba)KHBIM aCHEKTOM SBIISIETCSI OTPAaHUYEHHOCTh JOCTYNHBIX HAOOpOB JAaHHBIX,
copepkamux adversarial-npumepsl, cnenuGUUHBIX JUISI METUIIMHCKOW 001acTu. DTO 3aTpydHseT
oOy4eHre U BaTUIalNI0 JETEKTOPOB aTakK, a TAK)Ke CHUYKAET 000OIIAFONIYIO CIIOCOOHOCTD 3aIIUTHBIX
MexaHu3MoB. OTcyTcTBHE OOIICNPUHATHIX OCHUMApPKOB JUIS OLIEHKM YCTOMYMBOCTH MOAEJeH B
KJIMHUYECKUX 3a/1a4yax TaKXKe MPEMSTCTBYET CTaHJapTU3aLliU IIOJXO0/0B.

Tem He MeHee, NMEpPCHEKTHUBBI Pa3BUTUS B ITOH OOJACTH OCTAIOTCS 3HAYUTEIHHBIMH.
PazpaOarbIBatoTcst THOPUIHBIE APXUTEKTYPhI, COUETAIOMINE TPAJAULIUOHHBIE METOJbl MALIMHHOTO
oOy4yeHusI W HeHpOoCeTeBble pEIIeHUs C D3JIEMEHTAaMH JIOTHYEeCKOro BbIBoAa. MHTerpauus ¢
TeXHONOTHsIMH ~ pacnpenenéHHoro oOydenuss (federated learning) mo3BoNsleT  YYHUTHIBATH
pasHooOpa3ue KIMHUYECKUX JaHHBIX 0e3 HapylieHus koHpuaeHuuanpHocTH. Kpome Toro, ycunus
UCClieloBaTeNield HalpaBlIeHbl HA IOBBIIICHUE WHTEPHIPETUPYEMOCTH POOACTHBIX MOJENEH, 4YTo
0COOEHHO BayKHO JUIs 00ECTIEUECHUS JOBEPHSI METUIIMHCKOTO [TEPCOHANA K CUCTEMaM HCKYCCTBEHHOTO
uHremekta [10].

3akiouenne

YeToiunBOCTh HEHpOCETeH K 11eJIeHapaBICHHBIM aTakaM MproopeTaeT 0co0yro 3HaYMMOCTh B
KOHTEKCTE MEAULMHCKUX CUCTEM, TI€ TOUHOCTh U HaJEKHOCTh BBIBOJOB HEMOCPEACTBEHHO BIIHSIOT
Ha 3JI0pOBbE M 0€30MacHOCTh MalKeHTOB. [IpoBeAEHHBIN aHATU3 MOKA3bIBAET, YTO OOJBIIMHCTBO
COBPEMEHHBIX apXHUTEKTYp MOJABEPKEHBI BO3/AcHcTBHIO adversarial-mpuMepoB, 0COOCHHO B 3aJa4ax
KJaccu(uKauy U300paXeHui U aHamu3a OMOCUTHANIOB. JTO TpeOyeT 00s3aTebHOTO BKIIOYCHUS
MEXaHNU3MOB 3alIUTHl IPU TMPOECKTUPOBAHUM U BHEAPEHUM HWHTEIUIEKTYaJbHBIX MEIUIIMHCKUX
pemenuii. PazHooOpasue moaxonoB K oOecmedeHuto podacTHocTH - oT adversarial-training 1o
JIETEKTOPOB Ha CKPBITHIX CIIOSX - IEMOHCTPUPYET, YTO KOMIUIEKCHBIE CTPATETruu SIBIISIOTCS Hanboee
nepcrneKTUBHBIMU. OJHAKO MOJIHASI 3aIUTa OT aTaK MOKa HEAOCTHKUMA, U KayKIbI METOJ COIIPSKEH
C ONPEAEIEHHBIMU KOMIIPOMHCCAMH, BKJIIOYas CHW)KEHHE INPOU3BOAUTEILHOCTU U YBEIUYEHHUE
BBIYHMCIIUTENIBHON Harpy3KH.

Takum o0Opa3zom, obecrieueHre YCTOHUMBOCTH HelipoceTel B MEIUIIMHCKIX CUCTEMaXx JIOJKHO
paccMaTpuBaTbCsl Kak NPUOPUTETHOE HAIpaBICHHWE B OONACTH IH(PPOBOrO 3APAaBOOXPAHEHHUSL.
JlanpHeWIe HCCleAoBaHUs JODKHBI OBITh HANpaBiICHbl Ha CO3JaHHME CTaHIAPTU3MPOBAHHBIX
MIPOTOKOJIOB OLIEHKH POOACTHOCTH, pa3pabOTKy 3HEprod((eKTUBHBIX 3aIUTHBIX APXUTEKTYp U
dbopMuUpOBaHHE JIOBEPHUTEIBHOW CpeObl B3aMMOACWUCTBUS MEXKIY BpadyoM ©  CUCTEMOH
HCKYCCTBEHHOI'O MHTEJUIEKTA.
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Abstract

This paper investigates the application of fusion-based algorithms for predicting equipment
failures in industrial environments. It focuses on decision-level fusion techniques, demonstrating their
effectiveness in aggregating predictions from heterogeneous models to improve fault detection
accuracy. A combination of synthetic data experiments and comparative evaluations of fusion
strategies provides evidence for the advantages of ensemble methods in terms of generalization,
modularity, and robustness. The study also addresses the role of preprocessing and signal integration
in optimizing predictive performance under real-world conditions. The findings suggest that hybrid
fusion approaches can be effectively integrated into scalable and adaptable predictive maintenance
systems.

Keywords: equipment failure prediction, fusion algorithms, ensemble learning, decision-level
fusion, sensor data, predictive maintenance, industrial systems, model integration.

AHHOTAIHUA

B crarbe paccmarpuBaloTCs aNropuTMbl Ha OCHOBe ciusHus (fusion) mis mpenckazaHHs
OTKa30B OOOpYJOBaHUS B YCJIOBHUSX IPOMBIIUICHHBIX cUCTeM. OCHOBHOE BHHUMAaHHE YAEICHO
METO/aM CIUSHHUS HA YPOBHE pEIICHUH, AEMOHCTPUPYIOMUM 3((EKTUBHOCTh arperupoBaHUs
MIPOTHO30B OT PAa3IMYHBIX MOZAEJEH sl MOBBIMICHHS TOYHOCTH BBISBICHHs HeucmpaBHocTen. C
MCTIOJIb30BAaHHEM CUHTETUYECKUX JTAHHBIX U CPABHUTEIBHOTO aHAJIM3a CTPATErHid CIIMSHUS ITOKa3aHblI
MIPEUMYIIECTBA aHCAMOJIEBBIX TTOAXOAO0B C TOUKH 3pEHUS 0000IIao1Ieii CltoCOOHOCTH, MOTYIbHOCTH
U ycToiunBocTH. Takxke MOAUEPKUBAETCS POJb 3Tama MpeJoOpadOTKU CUTHAJOB B 00ECHEYeHUU
HaJIEKHOCTH TPOTHO3a B PEabHBIX YCIOBHUSX AKCIUTyaTallMu. Pe3ynbraThl CBUAETENBCTBYIOT O
NEPCIEKTUBHOCTH THOPUIHBIX CTPAaTeTHHl CIMAHUS JUIsI TOCTPOCHHUS MACIITa0MpyeMBIX U
aIaNTHBHBIX CUCTEM MPEAUKTUBHOTO O0CITyKUBAHMUS.

KirueBble cioBa: TmpeicKazaHHE OTKa30B O0OpYZOBaHUS, aJrOPUTMBI  CIUSHUS,
aHcaMm0OiieBoe OOy4eHHE, CIUSHUE Ha YPOBHE pEIICHHUH, CEHCOpHBIC ITaHHBIEC, MPEIUKTUBHOE
00CITy’)KUBaHHUE, TPOMBIIIJICHHbIE CUCTEMBbI, MHTETPALIUs MOJACIICH.

Introduction

The increasing integration of complex equipment in industrial, transportation, and energy
systems has led to growing interest in accurate and proactive failure prediction methodologies.
Unexpected equipment malfunctions result not only in direct operational downtime but also in
cascading economic losses and safety risks. Traditional condition-based monitoring approaches,
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while useful, often fail to generalize across heterogeneous systems and fail to capture subtle,
multivariate degradation patterns over time.

To address these challenges, the development of data-driven predictive models has gained
prominence. In particular, the use of fusion algorithms-methods that combine heterogeneous data
sources and analytical techniques-has demonstrated significant potential in enhancing prediction
accuracy and robustness. Fusion-based models integrate sensor data, maintenance logs, operational
parameters, and sometimes environmental inputs to detect complex interdependencies and early
failure signals. These approaches range from low-level data fusion to high-level decision fusion,
leveraging statistical, machine learning, and deep learning frameworks.

This paper presents a structured review and analysis of equipment failure prediction models
that rely on fusion algorithms. The study covers methodological architectures, data preprocessing
strategies, model performance evaluation, and deployment scenarios in real-world systems. Special
attention is given to hybrid models that integrate multiple classifiers or learning paradigms.
Comparative visualizations and benchmarking tables are included to highlight the effectiveness of
different fusion strategies across industries. The findings are intended to support the design of more
resilient, scalable, and interpretable predictive maintenance systems.

Main part

Taxonomy of fusion algorithms in failure prediction systems

Fusion algorithms in failure prediction tasks are typically categorized by the level at which data
or decisions are combined. This structure helps formalize model design and clarify the types of
information integrated throughout the prediction pipeline. The most widely adopted taxonomy
includes three hierarchical levels: data-level fusion, feature-level fusion, and decision-level fusion.

At the data level, raw data from multiple heterogeneous sources (e.g., vibration sensors,
temperature monitors, operation counters) are merged before any feature extraction [1]. This approach
is valuable when the time synchronization and dimensional alignment of sources are manageable. It
often preserves the full variance of sensor signals but can be susceptible to noise and scale imbalances.

Feature-level fusion occurs after data preprocessing, where extracted features (statistical,
frequency-domain, or learned embeddings) from different modalities are concatenated or transformed
into a joint representation. This level is widely used in deep learning pipelines, particularly with
convolutional and recurrent architectures that integrate multi-sensory input. Feature-level fusion
strikes a balance between signal richness and dimensionality control.

At the decision level, predictions or confidence scores from multiple models-each trained on a
different data type or domain-are fused using voting, averaging, or meta-learners. This approach
supports model interpretability and modular deployment, and is especially useful in distributed
monitoring systems where local models operate independently.

The table 1 below summarizes these fusion levels, their main characteristics, and representative
use cases.

Table 1
Levels of fusion algorithms in equipment failure prediction
Fusion Description Strengths Typical use cases
level
Data-level |Merging raw signals from|Rich signal content; low | Multi-sensor vibration and
fusion multiple sources preprocessing acoustic monitoring
Feature- Concatenating  extracted|Balanced  complexity;| CNN-RNN-based predictive
level fusion | features from diverse inputs | suitable for deep | maintenance systems
learning
Decision- |Combining outputs from|High modularity; robust|Distributed diagnostics;
level fusion |different models or | to input variation ensemble systems in IloT
classifiers platforms
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The classification presented in table illustrates the structured hierarchy of fusion algorithms,
each offering distinct advantages depending on the system constraints and data availability. Data-
level fusion provides a high-resolution view of raw inputs but requires careful preprocessing to
manage noise and scale. Feature-level fusion achieves an effective compromise between signal
richness and model tractability, making it ideal for deep learning-based diagnostics. Decision-level
fusion offers the greatest modularity and is best suited for federated or ensemble architectures in
industrial Internet of Things (IIoT) applications. This layered taxonomy supports strategic model
selection and architectural design in failure prediction systems.

Implementation of decision-level fusion for equipment failure prediction

One of the practical applications of fusion algorithms is ensemble modeling, where predictions
from multiple classifiers are combined to improve robustness. This technique is particularly useful in
failure prediction tasks, where different types of features (e.g., time-series statistics, categorical
metadata, environmental indicators) may be best captured by distinct models [2].

The following Python code demonstrates a simplified version of decision-level fusion, where
three base classifiers are trained independently and their outputs are aggregated using majority voting.
This method can be extended to include weighted voting or stacking using meta-models for more
advanced fusion.

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier
from sklearn.svm import SVC

from sklearn.metrics import classification report

# Example synthetic dataset

from sklearn.datasets import make classification

X, y =make_classification(n_samples=1000, n_features=20,
n_informative=10, n_redundant=5,
n_classes=2, random_state=42)

# Split dataset
X train, X test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Define base classifiers

clfl = RandomForestClassifier(n_estimators=100, random_state=1)
clf2 = GradientBoostingClassifier(n_estimators=100, random_state=1)
clf3 = SVC(probability=True, kernel="rbf, random_state=1)

# Voting ensemble (majority rule)

voting_clf = VotingClassifier(estimators=[
('rf, clfl), ('gb', clf2), ('svc', clf3)

], voting="soft")

# Train ensemble model
voting_clf.fit(X_train, y_train)

# Evaluate
y_pred = voting_clf.predict(X _test)
print(classification_report(y_test, y_pred))

This code demonstrates how decision-level fusion leverages the strengths of diverse classifiers
to achieve improved generalization. In operational contexts, such ensembles can be distributed across
edge devices or executed as part of a centralized fault detection platform. The architectural flexibility
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of such systems allows for asynchronous training and inference, enabling parallelism across hardware
units and increasing fault tolerance through redundancy [3].

Moreover, decision-level fusion inherently supports modular updates and model retraining
without requiring end-to-end pipeline reconfiguration. This is particularly advantageous in industrial
environments where data distribution drifts over time due to equipment aging or changing operational
regimes. By encapsulating models as interchangeable units, the system can dynamically adapt to
evolving conditions while maintaining a high level of predictive reliability.

When integrated with real-time monitoring frameworks and alerting systems, such predictive
models contribute not only to failure prevention but also to resource optimization, reducing
maintenance overhead and unplanned downtimes. As industrial Internet of Things (IloT)
infrastructures mature, fusion-based predictive architectures are expected to play an increasingly
central role in intelligent asset management.

The implementation of decision-level fusion in equipment failure prediction demonstrates clear
advantages in terms of flexibility, robustness, and modularity. By combining diverse classifiers
trained on different data perspectives, ensemble systems reduce overfitting and improve
generalization across varying operational conditions. This approach not only enhances prediction
accuracy but also facilitates scalable deployment in industrial environments, where adaptability to
system changes and continuous retraining are critical. As a result, decision-level fusion emerges as a
pragmatic and effective strategy for building resilient predictive maintenance solutions.

Signal preprocessing strategies for robust failure prediction

Signal preprocessing plays a critical role in failure prediction systems, as it determines the
quality of features fed into downstream models. The effectiveness of the prediction pipeline is highly
dependent on how well raw sensor data-often noisy, high-dimensional, and non-stationary-are
transformed into structured, informative representations.

One commonly used strategy is the calculation of windowed statistical metrics, such as mean,
standard deviation, kurtosis, and root mean square (RMS) over sliding windows. This method is
computationally efficient and well suited for real-time or edge-based inference, especially in
embedded systems. However, its simplicity comes at the cost of losing temporal dependencies, which
may be critical for detecting slow degradation patterns.

In contrast, frequency domain transformations like the fast Fourier transform (FFT) or wavelet
decomposition offer insight into periodic components and spectral behavior of signals [4]. These
methods are widely used for rotating machinery analysis, where failures often manifest as changes in
vibration frequency. Yet, they are sensitive to noise, aliasing, and require careful parameter tuning to
yield interpretable results.

More recent advances include unsupervised representation learning using autoencoders, which
compress raw multivariate data into latent embeddings that preserve structure while filtering out
noise. This approach is useful for dimensionality reduction in deep learning pipelines but demands
sufficient training data and tuning to avoid loss of critical information [5].

A powerful but computationally intensive strategy involves recurrent neural models,
particularly long short-term memory (LSTM) networks, which are capable of modeling long-term
temporal dependencies. These architectures are ideal for tracking progressive wear or cumulative
stress in components, though their deployment often requires high-performance hardware and careful
calibration to avoid overfitting. The following table 2 summarizes these preprocessing strategies.

Table 2
Signal processing strategies in failure prediction
Processing Key features Use case Limitations
strategy
Windowed statistics | Mean, variance, kurtosis|Low-latency edge|May lose temporal

over sliding windows inference dependencies

Frequency domain|FFT, wavelet transforms for | Anomaly detection in|Sensitive to noise and
transformation spectral content rotating machines aliasing
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Processing Key features Use case Limitations
strategy
Autoencoder-based | Unsupervised feature | Dimensionality Requires tuning and
embedding compression and noise|reduction for deep|training data volume
filtering models
Recurrent  neural | Captures temporal patterns | Modeling wear | High computational cost
modeling and long-term dependencies | progression over time |and training complexity

The comparison of signal preprocessing strategies reveals that no single approach universally
outperforms others across all failure prediction scenarios [6]. Simpler methods such as windowed
statistics offer low-latency execution but may overlook complex temporal dependencies. Frequency
domain techniques are effective in capturing periodic behaviors yet require careful tuning to avoid
misinterpretation. Advanced approaches like autoencoder-based embeddings and recurrent neural
modeling provide greater predictive power at the expense of computational complexity and data
requirements. Ultimately, selecting the appropriate preprocessing method depends on the
characteristics of the monitored system, the computational constraints of the deployment
environment, and the desired balance between interpretability and accuracy.

In practice, however, many high-performing predictive maintenance systems rely on hybrid
preprocessing pipelines that combine multiple techniques. For instance, initial smoothing and
normalization using windowed statistics can be followed by dimensionality reduction through
autoencoders, with the resulting features fed into sequence models like LSTM networks. This layered
structure balances computational efficiency with temporal resolution, improving both accuracy and
robustness under noisy or incomplete sensor conditions.

Furthermore, domain specificity plays a decisive role in preprocessing strategy selection.
Vibration signals benefit significantly from frequency-domain analysis, while temperature, pressure,
or electrical signals may require trend extraction or statistical profiling [7]. Tailoring the signal
transformation pipeline to the failure modes and operational context of each system enhances
detection performance and interpretability.

Finally, given the real-world constraints of industrial environments-sensor drift, missing values,
hardware variability-preprocessing strategies that include noise suppression, gap-filling, or adaptive
filtering are increasingly important. Incorporating these into the preprocessing phase ensures the
downstream model operates on clean, consistent inputs, ultimately contributing to more stable and
trustworthy predictions.

Decision-level fusion with ensemble classifiers for failure detection

In predictive maintenance systems, the ability to robustly detect early signs of equipment failure
from heterogeneous sensor data is essential. Ensemble learning offers a powerful mechanism for
decision-level fusion, where multiple models are combined to improve prediction accuracy, reduce
overfitting, and increase reliability under variable operational conditions.

To demonstrate this approach, a synthetic dataset was generated, simulating four key sensor
types often used in industrial environments: temperature, vibration, voltage, and pressure. Each
sample was labeled either as a normal condition (0) or failure event (1). Two high-performance
classifiers-Random Forest and Gradient Boosting-were trained independently, and their predictions
were fused using a soft-voting ensemble, which averages the predicted probabilities from both
models. The following Python code illustrates the pipeline.

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier
from sklearn.datasets import make classification

from sklearn.model_selection import train_test split

from sklearn.metrics import classification report

# Generate synthetic failure prediction dataset
X,y =make_classification(n_samples=1000, n_features=4, n_informative=3,

Ne 2/2025 Journal «Professional Bulletin. Information Technology and Security» 77



The scientific publishing house «Professional Bulletin»

n_redundant=1, weights=[0.7, 0.3], random_state=42)

# Train-test split
X train, X test, y train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Initialize classifiers and soft-voting ensemble

rf = RandomForestClassifier(n_estimators=100, random_state=42)

gb = GradientBoostingClassifier(n_estimators=100, random_state=42)
ensemble = VotingClassifier(estimators=[('rf, rf), ('gb', gb)], voting="soft")

# Train and evaluate

ensemble.fit(X train, y train)

y_pred = ensemble.predict(X test)
print(classification report(y_test, y_pred))

The evaluation results of the ensemble classifier are presented in table 3, which summarizes
key performance indicators for both the normal and failure classes. It includes precision, recall, and
Fl-score, as well as overall accuracy. These metrics provide a comprehensive assessment of the
model’s ability to differentiate between operational and failure states under imbalanced class
distributions. The high Fl-score for the failure class indicates the ensemble's effectiveness in
minimizing false negatives, which is crucial for safety-critical maintenance applications.

Table 3
Classification metrics for ensemble fusion model
Class Precision Recall F1-score Support
0 (Normal) 0.95 1.0 0.98 206.0
1 (Failure) 1.0 0.89 0.94 94.0
Accuracy - - 0.97 -

The ensemble classifier demonstrated strong generalization, achieving a high F1-score (0.94)
for the failure class and overall accuracy of 97%. This indicates that decision-level fusion effectively
combines the strengths of tree-based models to reduce false negatives-critical in safety-sensitive
applications [8].

Such an ensemble can be deployed in real-world monitoring systems, running either on
embedded edge devices or centralized servers. Its modular nature allows for future integration of
additional classifiers, adaptation to new sensor modalities, and continuous retraining for evolving
failure patterns.

Comparison of fusion strategies for failure prediction

Different fusion strategies-ranging from early signal-level integration to late-stage decision
aggregation-offer distinct trade-offs in terms of accuracy, latency, scalability, and interpretability [9].
In industrial applications, selecting an appropriate fusion method depends not only on technical
performance but also on deployment constraints, sensor architecture, and system requirements.

Table 4 presents a comparative overview of common fusion approaches, highlighting their
operational characteristics and suitability for different failure prediction scenarios.

Table 4
Comparison of fusion strategies for failure prediction

Fusion Description Advantages Limitations Suitable use
strategy cases
Signal- Combines raw sensor | Low latency, simple|Sensitive to noise,|Low-power
level signals before feature |architecture limited edge devices
fusion extraction interpretability
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Fusion Description Advantages Limitations Suitable use

strategy cases
Feature- |Merges features from|Rich contextual | Requires  alignment | Mid-scale
level different sensors into a |representation, better |and normalization of|industrial
fusion unified model accuracy features setups

Decision- |Aggregates predictions | Modular, robust to|Depends on quality of | Centralized
level from multiple | model variance individual models monitoring
fusion classifiers platforms

Hybrid Integrates multiple | Flexible, adaptable to | Increased system | Multi-layer
fusion fusion strategies across | complex systems complexity, hard to|predictive
the pipeline debug frameworks

The comparative analysis presented in table highlights the operational differences between
various fusion strategies employed in equipment failure prediction. While signal-level fusion offers
simplicity and minimal latency, it lacks robustness in noisy environments and does not scale well to
complex systems [10]. Feature-level fusion provides richer context and improved accuracy but
requires careful synchronization and preprocessing of input data.

Decision-level fusion stands out for its modularity and ease of deployment, particularly when
combining heterogeneous models. However, its effectiveness strongly depends on the diversity and
quality of the individual classifiers. Finally, hybrid fusion approaches deliver the highest flexibility
and adaptability by integrating multiple fusion layers, though they introduce significant complexity
and demand advanced system coordination [11].

These findings suggest that no single fusion strategy is universally optimal. The choice should
be driven by system constraints, data availability, and the required balance between predictive
accuracy, computational overhead, and architectural maintainability.

Conclusion

The growing complexity and criticality of modern industrial systems have made predictive
maintenance an essential component of operational reliability. This paper explored the use of fusion-
based approaches-particularly decision-level fusion-for predicting equipment failures using sensor
data. By combining multiple models or signals, fusion strategies enhance generalization, mitigate
noise, and increase robustness to real-world variability.

Empirical evaluation using ensemble classifiers demonstrated that decision-level fusion, such
as soft voting among diverse tree-based models, can significantly improve failure detection accuracy
while maintaining modularity and scalability. Complementary analysis of signal preprocessing
techniques and fusion strategy comparison further emphasized the importance of tailoring solutions
to specific deployment constraints and data characteristics.

Despite promising results, challenges remain. These include managing data quality, optimizing
real-time performance, and ensuring interpretability in high-stakes environments. Hybrid fusion
architectures, which integrate signal-, feature-, and decision-level mechanisms, offer a promising
direction for future development, particularly when aligned with edge computing and continuous
learning paradigms. Ultimately, the integration of fusion algorithms into predictive maintenance
workflows holds significant potential for improving equipment uptime, reducing operational costs,
and enabling proactive decision-making in mission-critical industries.
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