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Abstract 
This article explores secure multi-party computation (SMPC) as a foundational cryptographic 

approach for performing collaborative analytics on sensitive big data without compromising privacy. 
The study analyzes the architectural components, protocol mechanisms, and practical considerations 
for integrating SMPC into large-scale analytical systems. Key focus areas include data representation, 
secure aggregation, performance optimization, and interoperability with machine learning workflows. 
Through illustrative examples and technical evaluation, the paper highlights current limitations and 
emerging solutions for scalable, privacy-preserving computation. The findings offer insights into 
designing secure analytics pipelines suitable for real-world deployment across regulated and 
distributed environments. 
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Аннотация 
В статье рассматриваются методы безопасных многопартийных вычислений (SMPC) как 

криптографическая основа для конфиденциальной обработки больших данных в условиях 
распределённой аналитики. Исследуются архитектурные принципы, механизмы протоколов и 
практические аспекты внедрения SMPC в масштабируемые аналитические платформы. 
Особое внимание уделяется представлению данных, безопасной агрегации, стратегиям 
оптимизации производительности и интеграции с рабочими процессами машинного обучения. 
Приведённые примеры и технический анализ демонстрируют существующие ограничения и 
потенциальные решения в области защищённой вычислительной аналитики. Представленные 
результаты способствуют формированию надёжной и масштабируемой среды для анализа 
чувствительных данных в различных отраслях. 
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Introduction 
The growing reliance on large-scale data-driven systems has intensified concerns regarding data 

confidentiality, particularly in contexts where multiple stakeholders must jointly analyze sensitive 
datasets. Traditional approaches to secure analytics often require data centralization, which introduces 
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significant privacy risks and regulatory challenges. As industries increasingly adopt distributed data 
processing across organizational or jurisdictional boundaries, ensuring privacy without 
compromising analytical capabilities becomes a critical objective. This tension is especially evident 
in sectors such as healthcare, finance, and public governance, where regulatory frameworks prohibit 
raw data sharing while demanding collaborative insights. 

Secure multi-party computation offers a cryptographic paradigm that enables joint computation 
over private inputs without revealing individual data to participating entities. By allowing mutually 
distrusting parties to collaborate on data processing while preserving input confidentiality, SMPC 
provides a foundation for privacy-preserving analytics across decentralized infrastructures. Recent 
advances in cryptographic protocols, including secret sharing, homomorphic encryption, and 
oblivious transfer, have significantly improved the efficiency and scalability of such systems, making 
them more viable for integration with Big Data technologies. 

This paper aims to examine the methodological foundations and practical implementation 
aspects of SMPC in the context of confidential analytics on large-scale data. The study explores 
protocol designs, system architectures, and deployment considerations necessary for real-world 
applications. It also analyzes performance trade-offs, compatibility with existing data infrastructures, 
and potential for integration with machine learning pipelines. The research contributes to the 
development of secure computational environments where privacy, accuracy, and scalability can 
coexist without the need for centralized trust. 

Main part 
Core protocol structure of secure multi-party computation 
Secure multi-party computation protocols are designed to allow multiple participants to jointly 

compute a function over their private inputs while ensuring that no party gains access to the inputs of 
others. At the heart of these protocols lies the definition of a shared computational goal expressed as 
a function, typically decomposed into basic arithmetic or logical operations. Each party encrypts or 
encodes its data in a way that permits manipulation without exposing the raw values, enabling 
cooperative execution of the overall computation [1]. Such protocols are underpinned by foundational 
cryptographic mechanisms such as additive secret sharing, where data is split into fragments 
distributed among participants. 

A typical computation proceeds in synchronized rounds, with each round consisting of local 
computation, message exchange, and reconstruction. The communication topology and trust 
assumptions determine whether protocols follow a semi-honest or malicious threat model. In semi-
honest scenarios, parties follow the protocol but may try to infer hidden information; in malicious 
models, active deviation is anticipated and must be mitigated with verifiable computation steps. 
Protocols must also be resilient to latency and data loss in distributed networks, which is particularly 
important in big data settings where computation spans heterogeneous and geographically dispersed 
systems [2]. 

The pseudocode below presents a simplified implementation of an additive secret sharing 
protocol used to compute the sum of inputs from multiple parties without revealing their individual 
values. 

 
# Simplified additive secret sharing for sum computation 
 
import random 
 
def share_secret(secret, n): 
    """Split secret into n shares.""" 
    shares = [random.randint(0, 1000) for _ in range(n - 1)] 
    final_share = secret - sum(shares) 
    shares.append(final_share) 
    return shares 
 
def reconstruct(shares_list): 
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    """Reconstruct original value from all shares.""" 
    return sum(shares_list) 
 
# Example: three-party computation 
secret_inputs = [30, 50, 40]  # confidential inputs from three parties 
n = len(secret_inputs) 
 
# Each party shares their input 
all_shares = [share_secret(secret, n) for secret in secret_inputs] 
 
# Each party sums received shares for local partial result 
partial_sums = [sum(party_shares) for party_shares in zip(*all_shares)] 
 
# Reconstruct final result 
result = reconstruct(partial_sums) 
print("Final computed sum without revealing inputs:", result) 
 
This example demonstrates the essential mechanics of additive secret sharing, where private 

inputs are decomposed into distributed shares and securely aggregated without disclosure. The 
protocol is lightweight and suitable for summation tasks or input averaging in collaborative 
environments [3]. While simplistic, it forms the foundation for more complex secure computations 
involving matrix operations, machine learning inference, or statistical analysis in privacy-sensitive 
domains. 

Data representation and encoding techniques in SMPC workflows 
The effectiveness of SMPC protocols in large-scale analytical systems heavily depends on how 

data is represented and encoded prior to computation. Unlike conventional processing, where raw 
values are directly accessible, SMPC systems require that inputs be transformed into protected 
formats that preserve both structure and operational compatibility. Data encoding must support 
modular arithmetic and be resilient to truncation, overflow, and rounding errors, especially in 
floating-point domains. This becomes particularly relevant in privacy-preserving statistical 
computations, where accuracy must be retained across decentralized operations [4]. 

Integer-based encoding schemes, such as fixed-point representation, are widely adopted due to 
their compatibility with arithmetic sharing mechanisms. These formats enable efficient addition and 
multiplication over finite fields or rings, allowing protocols to operate on encrypted or secret-shared 
data without the need for costly cryptographic conversions. Moreover, batch encoding strategies have 
emerged to improve throughput in high-dimensional datasets, enabling parallel computation over 
matrix-shaped data. Careful selection of modulus size and base precision is crucial to maintain both 
correctness and performance. 

In addition to numeric representations, categorical and structured data pose specific challenges 
[5]. Common preprocessing steps-such as one-hot encoding or binary transformation-must be adapted 
to privacy-preserving settings, where neither input labels nor encoded vectors can be exposed. These 
operations must be embedded into the protocol logic without leaking structural information through 
intermediate states or memory access patterns. As a result, data representation becomes a design 
constraint as much as an implementation detail, influencing the feasibility and scalability of SMPC 
in real-world analytics pipelines. 

Secure aggregation mechanism for federated analytics 
Secure aggregation plays a central role in federated analytics settings, where data contributors 

independently compute local updates that are later combined into a global result. In privacy-sensitive 
scenarios, this aggregation must occur without revealing individual updates to any party, including 
the orchestrator. SMPC-based aggregation schemes address this by enabling participants to mask their 
local outputs with randomly generated values that cancel out upon summation [6]. These protocols 
allow analytics such as mean, weighted sums, or even gradient accumulation to be performed across 
multiple parties, with formal privacy guarantees. 
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One of the core advantages of this approach is its compatibility with asynchronous or partially 
connected systems. Participants can operate independently and submit masked results when ready, 
without requiring synchronized rounds or persistent connectivity. Moreover, masking techniques can 
be combined with cryptographic commitments or integrity checks to ensure that submitted values are 
structurally correct and free from tampering [7]. This makes the scheme suitable for deployment in 
environments such as mobile networks, industrial sensor arrays, or inter-institutional research 
collaborations. 

The following example illustrates a simplified implementation of secure aggregation using 
additive masking. Each participant adds a random noise vector to their local data and distributes 
corresponding canceling masks to others, ensuring that individual updates remain private but the 
global sum remains correct. 

 
import numpy as np 
 
def generate_masks(num_parties, vector_size): 
    """Generate a set of canceling masks for secure aggregation.""" 
    masks = np.random.randint(-10, 10, (num_parties, vector_size)) 
    total_mask = np.sum(masks, axis=0) 
    masks[-1] -= total_mask  # Ensure masks cancel out in aggregation 
    return masks 
 
def secure_aggregate(local_updates, masks): 
    """Apply masks to local updates and sum masked values.""" 
    masked_updates = [u + m for u, m in zip(local_updates, masks)] 
    aggregate = np.sum(masked_updates, axis=0) 
    return aggregate 
 
# Simulation: three clients compute local updates 
num_clients = 3 
vector_dim = 5 
local_updates = [np.random.randint(0, 5, vector_dim) for _ in range(num_clients)] 
masks = generate_masks(num_clients, vector_dim) 
 
# Aggregator receives masked updates 
aggregated_result = secure_aggregate(local_updates, masks) 
print("Securely aggregated result:", aggregated_result) 
 
This example demonstrates how additive masking can enable secure aggregation in federated 

systems without disclosing individual data contributions [8]. The use of canceling random vectors 
ensures that intermediate values remain private while allowing the correct global result to be 
recovered. Such techniques form the foundation of many privacy-preserving analytics protocols used 
in cross-device, cross-organization, or cross-border data collaborations. 

Performance constraints and optimization strategies in SMPC systems 
The deployment of SMPC protocols in big data contexts introduces substantial computational 

and communication overhead compared to conventional processing pipelines. These constraints stem 
from the cryptographic nature of secure computation, which often requires multiple rounds of 
interaction, modular arithmetic over finite fields, and the exchange of intermediate masked values. In 
large-scale analytics scenarios, where datasets contain millions of records or high-dimensional 
features, these costs can quickly render naïve implementations impractical [9]. Therefore, achieving 
acceptable performance in real-world applications demands both protocol-level optimizations and 
system-level adaptations. 

One of the key performance bottlenecks lies in the network. Since many SMPC schemes rely 
on interactive operations between parties, latency and bandwidth become critical factors [10]. 
Protocols must be designed to minimize the number of communication rounds, reduce the size of 
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transmitted payloads, and support asynchronous execution. Techniques such as precomputation, 
where parties compute cryptographic shares or randomness in advance, can significantly reduce 
online latency. In some settings, hybrid approaches that combine secure computation with differential 
privacy or trusted execution environments are adopted to offload expensive operations while retaining 
security guarantees. 

At the computational level, the complexity of arithmetic operations-particularly multiplication 
and comparison-is another limiting factor. Secure multiplication protocols often involve multiple 
communication rounds or require pre-shared multiplication triples, which may not scale efficiently 
with the dataset size. To address this, modern SMPC frameworks implement batch processing, 
parallel evaluation, and optimized circuits that reduce the gate complexity of common analytical 
functions [11]. Additionally, approximate computation techniques, such as fixed-point arithmetic and 
reduced-precision encoding, are employed to strike a balance between computational efficiency and 
result fidelity, especially in iterative algorithms such as training machine learning models. 

Resource management is also a crucial concern. SMPC implementations must be tailored to the 
hardware and software constraints of deployment environments, whether in cloud clusters, on-
premises servers, or edge devices. Memory usage, threading, and garbage collection behavior must 
be optimized to prevent system stalls during execution. Moreover, adaptive scheduling mechanisms 
that allocate computation tasks dynamically across available nodes help improve throughput and fault 
tolerance. These optimizations collectively enhance the feasibility of SMPC integration into 
production-scale data analytics systems, ensuring that confidentiality does not come at the expense 
of scalability and responsiveness. 

Practical optimization strategies for scalable secure computation 
As secure multi-party computation becomes more prevalent in large-scale data analysis, 

practical optimization strategies play a crucial role in bridging the gap between theoretical protocols 
and deployable systems [12]. These techniques are aimed at mitigating specific bottlenecks inherent 
to secure computation, such as latency, arithmetic overhead, and limited concurrency. In real-world 
applications, selecting the right combination of optimizations determines not only the speed of 
computation but also the scalability and fault resilience of the entire system. 

The following table 1 presents a summary of widely adopted optimization techniques in SMPC 
implementations, along with the corresponding system-level bottlenecks they address and their 
impact on computational performance. 

Table 1 
Performance optimization strategies in SMPC systems 

Optimization technique Targeted bottleneck Effect on performance 
Precomputation of randomness Online latency Reduces wait time during live 

execution 
Batch processing of secure 
operations 

Per-operation overhead Improves throughput for repeated 
computations 

Use of fixed-point arithmetic Arithmetic complexity Decreases cost of numeric operations 
Reduced communication 
rounds 

Network delay Minimizes inter-party 
synchronization delay 

Parallel execution of local 
steps 

Processing time Accelerates computation across nodes 

Adaptive task scheduling Load balancing and 
throughput 

Enhances scalability in heterogeneous 
systems 

The optimization techniques outlined above demonstrate how targeted improvements at both 
the algorithmic and infrastructural levels can significantly enhance the efficiency of SMPC-based 
analytics. While each method addresses a distinct performance bottleneck, their combined application 
enables secure computation to scale toward production-level workloads without compromising 
privacy guarantees. Selecting appropriate strategies requires careful evaluation of system constraints, 
workload characteristics, and resource availability, highlighting the need for flexible and modular 
SMPC frameworks tailored to real-world deployment environments. 



The scientific publishing house «Professional Bulletin» 

№ 1/2025 Journal «Professional Bulletin. Information Technology and Security» 23 

Integration with machine learning workflows in confidential analytics 
Integrating SMPC protocols into machine learning (ML) pipelines introduces a new layer of 

complexity, driven by the need to balance computational privacy with model accuracy, training 
efficiency, and workflow automation. In many privacy-sensitive domains-such as healthcare 
diagnostics, financial risk modeling, and population-level behavior prediction-ML tasks must be 
executed collaboratively without revealing proprietary datasets. Secure computation frameworks 
provide a mechanism for such privacy-preserving collaboration, allowing distributed model training 
or inference without centralizing data. 

One of the principal challenges in SMPC-ML integration is adapting iterative optimization 
algorithms, such as stochastic gradient descent, to function within a secure setting. These algorithms 
typically require repeated computation of gradients, updates to model parameters, and aggregation of 
local contributions across participants. When executed under secure protocols, each of these steps 
becomes significantly more resource-intensive, both in terms of communication and computation. In 
response, research efforts have focused on optimizing sub-protocols for secure matrix operations, 
developing quantization-aware training methods, and reducing the depth of arithmetic circuits used 
in model evaluation. 

Another consideration involves supporting diverse ML models, from linear classifiers to deep 
neural networks. While simple models can often be implemented using fixed-point arithmetic and 
shallow circuits, more complex architectures require approximate activation functions, layer-wise 
encryption, or hybrid execution models where sensitive layers are computed securely while others 
operate in plaintext [13]. Additionally, data preprocessing tasks-such as normalization, encoding, and 
feature selection-must be securely embedded into the pipeline, ensuring that privacy is maintained 
end-to-end. 

From a systems perspective, successful integration also depends on compatibility with existing 
ML frameworks and infrastructure. SMPC implementations must offer clean APIs, model conversion 
tools, and parallelizable backends to work alongside platforms like TensorFlow, PyTorch, or federated 
learning engines. Scalability, fault tolerance, and reproducibility become critical, particularly in 
multi-organizational settings where compute environments and data schemas differ. These 
requirements highlight the need for robust middleware that bridges secure computation engines with 
modern ML ecosystems, enabling confidential analytics to transition from experimental prototypes 
to reliable components of production data science workflows. 

Conclusion 
The evolution of secure multi-party computation has transformed the landscape of privacy-

preserving analytics, offering practical tools for collaborative computation without compromising 
data confidentiality. By enabling distributed entities to jointly process sensitive information while 
retaining control over their private inputs, SMPC addresses a critical need in data-driven sectors 
governed by stringent regulatory and ethical constraints. Its applicability extends beyond theoretical 
models, reaching real-world systems that require both analytical insight and rigorous privacy 
protection. 

This study has examined the structural principles, protocol designs, and implementation 
strategies that underpin the application of SMPC in big data environments. Through practical 
examples, code-level demonstrations, and architectural considerations, the analysis highlights both 
the capabilities and limitations of current approaches. Attention was given to optimization strategies, 
performance bottlenecks, and integration pathways with machine learning workflows-factors that 
define the viability of SMPC in production-scale deployments. 

As the demand for confidential analytics continues to grow, future development of SMPC 
systems must focus on improving computational efficiency, reducing communication overhead, and 
enhancing interoperability with existing data science infrastructure. The design of modular, scalable, 
and developer-accessible SMPC frameworks will be central to this progress, paving the way for 
secure and collaborative data analysis at scale. 

 
 



The scientific publishing house «Professional Bulletin» 

№ 1/2025 Journal «Professional Bulletin. Information Technology and Security» 24 

References 
1. Alghamdi W., Salama R., Sirija M., Abbas A.R., Dilnoza K. Secure multi-party computation 
for collaborative data analysis // E3S Web of Conferences. EDP Sciences. 2023. Vol. 399. P. 04034. 
2. Pappa C.K. Zero-Trust Cryptographic Protocols and Differential Privacy Techniques for 
Scalable Secure Multi-Party Computation in Big Data Analytics // J. Electrical Systems. 2024. Vol. 
20. No. 5s. P. 2114-2123. 
3. Sahinbas K., Catak F.O. Secure multi-party computation-based privacy-preserving data 
analysis in healthcare IoT systems // Interpretable Cognitive Internet of Things for Healthcare. Cham: 
Springer International Publishing. 2023. P. 57-72. 
4. Nookala G. Secure Multiparty Computation (SMC) for Privacy-Preserving Data Analysis // 
Journal of Big Data and Smart Systems. 2023. Vol. 4. No. 1. 
5. Salako A.O., Adesokan-Imran T.O., Tiwo O.J., Metibemu O.C., Onyenaucheya O.S., Olaniyi 
O.O. Securing Confidentiality in Distributed Ledger Systems with Secure Multi-Party Computation 
for Financial Data Protection // Journal of Engineering Research and Reports. 2025. Vol. 27. No. 3. 
P. 352-373. 
6. Olusegun J., Holland M., Brightwood S., Jerry H., Frank E. Distributed Secure Multi-Party 
Computation (SMPC) for Cloud-Based Big Data Analytics. 2024. 
7. Liu T. Research on Privacy Techniques Based on Multi-Party Secure Computation // 2024 
3rd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS). 
IEEE. 2024. P. 912-917. 
8. Liu D., Yu G., Zhong Z., Song Y. Secure multi-party computation with secret sharing for real-
time data aggregation in IIoT // Computer Communications. 2024. Vol. 224. P. 159-168. 
9. Ahammed M.F., Labu M.R. Privacy-preserving data sharing in healthcare: advances in secure 
multiparty computation // Journal of Medical and Health Studies. 2024. Vol. 5. No. 2. P. 37-47. 
10. Joshi D., Sanghi A., Agarwal G., Joshi B. Techniques for Protecting Privacy in Big Data 
Security: A Comprehensive Review // 2024 International Conference on Electrical Electronics and 
Computing Technologies (ICEECT). IEEE. 2024. Vol. 1. P. 1-7. 
11. Becker S., Bösch C., Hettwer B., Hoeren T., Rombach M., Trieflinger S., Yalame H. Multi-
Party Computation in Corporate Data Processing: Legal and Technical Insights // Cryptology ePrint 
Archive. 2025. 
12. Dangi D., Santhi G. Secured multi-party data release on cloud for big data privacy-preserving 
using fusion learning // Turkish Journal of Computer and Mathematics Education. 2021. Vol. 12. No. 
3. P. 4716-4725. 
13. Yogi M.K., Mundru Y. Genomic data analysis with variant of secure multi-party computation 
technique // Journal of Trends in Computer Science and Smart Technology. 2024. Vol. 5. No. 4. P. 
450-470. 
  


