Scientific publishing house
Professional Bulletin

Information Technology
and Security

Issue Ne3/2025

A scientific journal for the best specialists in the
industry. Inside: original works on Al, data
analysis, cloud technologies and IT innovations.

INDEXATIONS ISSN 3100-444X

NP L support@ professionalbulletinpublisher.com
Google Scholar < WTERNATIONAL [o S

@9 ® Seicntific Indexing Researchal professionalbulletinpublisher.com/

g, HAYYHARA BNEKTPOHHARA

BUBAMOTEKA \i& CYBERLENINKA .. CiteFactor

Brasov, Sat Sanpetru, Comuna Sanpetru, Str.

Sfintii Constantin si Elena, nr. 6

W LIBRARY.RU

Hay4HOoe nspartenbcTBO
NMpodeccnoHanbHbin BeCTHUK

UHdopmaLMOHHbIe
TexHonorum u 6e3onacHoOCTb

Bbinyck Ne3/2025

Hayu4HbIn XXypHan anA nyywmux cneumanucTos
oTpacnu. BHyTpu: opuruHanbHble paboTsl no U,
aHanu3y AaHHbIX, 0611a4HbIM TEXHONOMMAM U
MHHOBaumAm B cdepe UT.

MHOEKCALIUN XXYPHAITIA ISSN 3100-444X

> 18! 4 Academic
Go gle Scholar sy IVIERNATIONAL R Resouree

ResearchBib professionalbulletinpublisher.com/

support @ professionalbulletinpublisher.com

PRI Aol ER L OSTTLA Q Brasov, Sat Sanpetru, Comuna Sanpetru, Str.

|,- 7 BUBNUOTEKA V L .’:"-";'_‘;'.C't F ¢
G LIBRARY.RU \&EYHEMENINKA 5 CiteFactor

Sfintii Constantin si Elena, nr. 6

Professional
Bulletin

The scientific publishing house «Professional Bulletin»
Journal «Professional Bulletin. Information Technology and Security»

Professional Bulletin. Information Technology and Security is a professional scientific journal.
The publication in it is recommended to practitioners and researchers who seek to find solutions to
real-world problems and share their experiences with the professional community. The publication in
journal is suitable for those specialists who work and actively develop advanced IT solutions, such

as Al, blockchain, big data technologies and others.

The journal reviews all incoming materials. The review is double-blind, carried out by internal and
external reviewers of the publishing house. Articles are indexed in a variety of international scientific
databases, and access to the journal's database is open to any reader. Publication in the journal takes

place 4 times a year.

Publisher's website: https://www.professionalbulletinpublisher.com/

Issue Ne 3/2025

Brasov County, Romania

https://www.professionalbulletinpublisher.com/

MpocheccuoHanbHbIN
BecTHUK

Hayunoe uznarensctBo «IIpodeccuoHanbHbIil BECTHUK»
Kypunaa «Ilpodeccuonanbublii BecTHUK. UHGOpMallMOHHbIE TEXHOJIOTHH U
0e3011aCHOCTD)

IIpodeccuonanbublii. BecTHHK. HH(OpMannMoHHBIE TEXHOJOIMH H 0e30MaCHOCTH —
npodeccuoHanbHOe HayuHoe wu3AaHue. [lyOnukanus B HEM pPEKOMEHJOBAaHA IpaKTHKaM U
HCCIICOO0BATCIISIM, KOTOPBIC CTPCMATCA HaWTH peuicHusd Mg pCalibHbIX 3a/la4 U MOACIUTHCSA CBOUM
ONBITOM C TpodecCHOHATBHBIM coobmecTBoM. IlyOnukanuss B JKypHaie MOAXOOUT ISl TeX
CTELUAINCTOB, KTO paboTaeT U aKTUBHO pa3BuUBaeT nepeaosbie M T-perienns, Takue Kak TEXHOIOTUN

NN, 6nokueiina, 60NBIINX TAaHHBIX U IPYTHE.

KypHan peneHzupyer Bce BXOIALIME MaTepuasbl. PelleH3MpoBaHUE — JBOMHOE CIIETIOE,
OCYIIECTBIISAETCS BHYTPEHHUMHU M BHEITHUMU PELICH3EHTaMU U3aTesibeTBa. CTaTbu MHAEKCUPYIOTCS
BO MHOKECTBE MEKIYHAPOIHBIX HAYYHBIX 0a3, 1OCTYN K 06a3e JaHHBIX ’KypHaIa OTKPBIT IS JII0OOTO

yuratesns. [lyOonukamus xKypHaia MpoucxoauT 4 pasa B TOJI.

Caiit u3garenncTsa: https://www.professionalbulletinpublisher.com/

Brimyck Ne 3/2025

XKyneu bpamos, Pymbiaus

https://www.professionalbulletinpublisher.com/

The scientific publishing house «Professional Bulletin»

Contents

Drogunova Y.
THE IMPACT OF TESTING PRACTICES ON THE PERFORMANCE AND PROFITABILITY OF

E-COMMERCE PLATFORMS AMID GROWING DIGITAL CONSUMPTIONooovvvvieeeeeieans 3
Garifullin R.

OPTIMIZATION OF FRONTEND APPLICATION PERFORMANCE: MODERN TECHNIQUES
AND TOOLS ..ottt e e e e e e e et et e eaeeseeeeeta e aaeaseses et aasaaassseeeeesssansaneeeeeeens 10

Smirnov A.
COMPARATIVE ANALYSIS OF PERFORMANCE AND SCALABILITY OF SYNCHRONOUS
AND ASYNCHRONOUS INTERACTIONS IN MICROSERVICE ARCHITECTURE 15

Terletska K.
DYNAMIC TRAFFIC CONTROL MECHANISMS IN DISTRIBUTED SYSTEMS AS A MEANS
OF ENSURING ADAPTABILITY AND FAULT TOLERANCE IN DIGITAL INFRASTRUCTURE

.. 21
Topalidi A.

INTEGRATION OF DEVOPS PRACTICES INTO DEVELOPMENT AND OPERATIONS
PROCESSES OF RUBY APPLICATIONS ...ttt ettt 28
Berezhnoy A.

ARCHITECTURAL DESIGN PATTERNS FOR HIGH-LOAD SYSTEMS: PRINCIPLES, TOOLS,
AND SCALABILITY CONSTRAINTS ...ttt 33
Ulyanov V.

DIGITAL VISUALIZATION OF INVESTMENT ACTIVITY IN THE EOS (VAULTA)
BLOCKCHAIN ECOSY STEM ...ttt ettt st 40
Mukayev T.

PREDICTIVE ANALYTICS BASED ON MACHINE LEARNING AS A TOOL FOR COST
OPTIMIZATION IN OPERATIONS MANAGEMENToooiiiiiiiiiiiieeeeeeeeee e 47
Bondarenko K.

FEATURE SELECTION METHODS IN MACHINE LEARNING: FROM SIMPLE FILTERS TO
INTERPRETABILITY WITH SHAP ...ttt 53
Bogutskii A.

THE EVOLUTION OF WEB CRAWLING IN SEARCH ENGINES: PERFORMANCE,
SCHEDULING, AND URL PRIORITIZATIONcooiiiiiiiiiiiienieeeenecteeee et 64

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 1

The scientific publishing house «Professional Bulletin»

CoaepxxkaHnue BbIycKa

Drogunova Y.
THE IMPACT OF TESTING PRACTICES ON THE PERFORMANCE AND PROFITABILITY OF

E-COMMERCE PLATFORMS AMID GROWING DIGITAL CONSUMPTIONooovvvvieeeeeieans 3
Garifullin R.

OPTIMIZATION OF FRONTEND APPLICATION PERFORMANCE: MODERN TECHNIQUES
AND TOOLS ..ottt e e e e e e e et et e eaeeseeeeeta e aaeaseses et aasaaassseeeeesssansaneeeeeeens 10

Smirnov A.
COMPARATIVE ANALYSIS OF PERFORMANCE AND SCALABILITY OF SYNCHRONOUS
AND ASYNCHRONOUS INTERACTIONS IN MICROSERVICE ARCHITECTURE 15

Terletska K.
DYNAMIC TRAFFIC CONTROL MECHANISMS IN DISTRIBUTED SYSTEMS AS A MEANS
OF ENSURING ADAPTABILITY AND FAULT TOLERANCE IN DIGITAL INFRASTRUCTURE

.. 21
Topalidi A.

INTEGRATION OF DEVOPS PRACTICES INTO DEVELOPMENT AND OPERATIONS
PROCESSES OF RUBY APPLICATIONS ...ttt ettt 28
Berezhnoy A.

ARCHITECTURAL DESIGN PATTERNS FOR HIGH-LOAD SYSTEMS: PRINCIPLES, TOOLS,
AND SCALABILITY CONSTRAINTS ...ttt 33
Ulyanov V.

DIGITAL VISUALIZATION OF INVESTMENT ACTIVITY IN THE EOS (VAULTA)
BLOCKCHAIN ECOSY STEM ...ttt ettt st 40
Mukayev T.

PREDICTIVE ANALYTICS BASED ON MACHINE LEARNING AS A TOOL FOR COST
OPTIMIZATION IN OPERATIONS MANAGEMENToooiiiiiiiiiiiieeeeeeeeee e 47
Bondarenko K.

FEATURE SELECTION METHODS IN MACHINE LEARNING: FROM SIMPLE FILTERS TO
INTERPRETABILITY WITH SHAP ...ttt 53
Bogutskii A.

THE EVOLUTION OF WEB CRAWLING IN SEARCH ENGINES: PERFORMANCE,
SCHEDULING, AND URL PRIORITIZATIONcooiiiiiiiiiiiienieeeenecteeee et 64

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 2

The scientific publishing house «Professional Bulletin»

UDC 004.415.5: 004.738.5:339.3

THE IMPACT OF TESTING PRACTICES ON THE PERFORMANCE AND
PROFITABILITY OF E-COMMERCE PLATFORMS AMID GROWING
DIGITAL CONSUMPTION

Drogunova Y.
bachelor’s degree, Dostoevsky Omsk state university (Omsk, Russia)

BJAUAHUE ITPAKTUK TECTUPOBAHUSA HA TPOU3BOJAUTEJIBHOCTD
N 1O0XOJHOCTb E-COMMERCE-IIVIAT®OPM B YCJIOBUAX POCTA
HU®POBOTI'O ITOTPEBJIEHUA

JAporynosa 10.1.
bakanasp, OMcKuil 20Cy0apcmeenHblll yHugepcumem
umenu . M. Jlocmoesckozo (Omck, Poccus)

Abstract

The article examines modern software testing practices in e-commerce and their influence on
the performance and economic efficiency of digital platforms. It analyzes the role of quality assurance
integration into CI/CD workflows, the automation of user scenarios, and real-time monitoring. The
study highlights that the maturity of the testing infrastructure directly affects key metrics such as
time-to-market, system resilience under load, and ROI. The implementation of testing strategies under
conditions of growing digital consumption contributes to incident reduction, conversion rate
improvement, and customer retention. The article concludes that quality assurance should be viewed
as a strategic asset of a digital platform.

Keywords: testing, e-commerce, DevOps, automation, performance, ROI, resilience.

AHHOTAIUSA

B cratebe paccMaTpuBarOTCSI COBPEMEHHBIE TMPAKTHKH TECTUPOBAHHS MPOTrPAMMHOTO
o0ecrieyeHus B 3JIEKTPOHHON KOMMEPLIMH U UX BIMSHUE HA TPOU3BOIUTENILHOCTh U SKOHOMUYECKYIO
3¢ deKTUBHOCTh HHU(POBBIX TUIATGOPM. AHAIM3HPYETCS POJIb MHTETPAllMHM TapaHTHH KayecTBa B
nporeccel CI/CD, aBToMaTH3aIMH M0JIb30BATEIBCKUX CIIEHAPUEB, a TAK)KE MOHUTOPUHTA B PEXKUME
peanbHOrO BpeMeHu. [louepkuBaeTcs, 4To 3peja0CTh TECTOBON HH(PACTPYKTYPHI HAIIPSIMYIO BIUSET
Ha TaKue METPHUKH, KaK BpeMsl BbIBOJIa MPOAYKTA HAa PHIHOK, YCTOWYMBOCTh CUCTEM IPU HArpy3Kax u
ROI. Hcnonp3oBaHue CTpaTeruii TECTUPOBAHMA B YCIOBHSX pOCTa HU(PPOBOro MOTpeOIeHUs
CIOCOOCTBYET CHIDKECHHIO MHIIMJCHTOB, YBEITMUCHUIO KOHBEPCUH U yJCpKaHUIO KiueHToB. Crenan
BBIBOJ] 0 HEOOXOAMMOCTH pacCMAaTPUBATh TAPAHTUH KaUeCTBA KaK CTPATETUUYECKUN aKTUB IIU(PPOBOH
1aT(HOPMBI.

KiroueBbie cJI0Ba: TECTUPOBAHUE, e-commerce, DevOps, aBTOMaTU3aLMs,
IIPOU3BOAUTENBHOCTH, ROI, ycToiunBOCTS.

Introduction

Rapid growth in digital consumption in recent years significantly impacted the dynamics of e-
commerce evolution. E-commerce websites have evolved from simple sales channels to sophisticated
digital ecosystems, and any malfunction of one component can result in instant financial loss, reduced
customer confidence, and a drop in major indicators like conversion rates, user retention, and repeat
purchases. In a competitive economy, customer expectations are not just limited to prices and product
offerings anymore — now they also encompass speedy page loading, interface stability, and error-free

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 3

The scientific publishing house «Professional Bulletiny

user experiences. Since system performance and reliability have a great deal to do with how advanced
the quality assurance (QA) processes are, the test function is now increasingly being recognized as a
leading force for both digital stability and business achievement.

The aim of this article is to analyze the impact of modern software testing practices on the
performance and profitability of e-commerce platforms under conditions of increasing load and
shifting consumer behavior. Particular attention is given to how the integration of QA into DevOps
workflows, automation of user scenario testing, and real-time monitoring contribute to enhanced
reliability metrics, reduced incident recovery time, and an overall increase in return on investment
(ROI) from digital solutions.

Main part. Causal link between software quality and business performance in e-
commerce

In the field of e-commerce, software quality is not merely a technical attribute but an
economically significant factor that directly influences a platform’s financial performance. Errors in
user-facing scenarios — such as failures during checkout, delays in page transitions, or inconsistencies
in shopping cart behavior — disrupt the user journey, erode trust, and directly reduce the platform’s
ability to convert visitors into paying customers. Such defects, particularly when persistent, contribute
to increased user churn, lower customer satisfaction metrics, and a decline in customer lifetime value
(LTV). According to estimates by research agency Grand View Research, the global market for e-
commerce software exceeded $7,5 billion in 2024 (fig. 1).

$12.0B
12
$10.67B
10 $9.49B
$8.44B
8 $7.5B
6
4
2
9 2024 2025 2026 2027 2028

Figure 1. Projected global e-commerce software market size, 2024-2028 [1]

Notably, the adverse effects of poor quality are rarely immediate or transient. As, over time,
technical debt accumulates through delayed refactoring or inadequate regression control, system
stability is compromised and scalability is hampered. The pervasive degradation impacts velocity of
feature releases and increases operating maintenance costs. At busy periods, say holiday seasons
when sales are high, if technical debt is not cleared, it can manifest as high response times or even
service shutdown (outage), both causing substantial revenue loss. Experts in the industry estimate
that one minute of unplanned downtime for an e-commerce giant can translate to tens of thousands
of lost sales.

It makes a direct cause-and-effect relationship between business performance and software
quality. Poor quality creates system failures, which degrade user experience and trigger negative
behavioral responses — reduced repeat business, higher support cost, and ultimately lower
profitability. QA therefore needs to be viewed not only as a technical reliability control but as a
strategic optimization control for important performance metrics (KPI) such as churn rate, customer
satisfaction, and ROI in e-commerce.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 4

The scientific publishing house «Professional Bulletin»

Testing strategies for digital commerce

Developing effective QA methods for web stores includes paying close heed to platform
architectural complexity, the over-sensitivity of user scenarios to failure, and the necessity of offering
assurances of resilience under varying load conditions. Testing multiple levels — ranging from
component-level validation to real-time monitoring — enable the identification of vulnerabilities at
several stages of the system life cycle and assist in minimizing the effect of defects on core business
metrics (table 1).

Table 1
Comparative overview of testing strategies in e-commerce [2, 3]
Testing strategy Purpose Method Tools Outcome
End-to-end Validate Simulate user | Cypress, Reduces failure
testing of user | business-critical | actions. Playwright, risk during
scenarios user flows. Selenium. checkout and
transaction
processes.
Integration Identify errors in | API requests and | Postman, Ensures stability
testing of | inter-service contract RestAssured, across distributed
microservices communication. | validation. Pact. components.
and API
Performance Assess system | Load simulation | JMeter, Gatling, | Readiness for
testing resilience under | and stress | Locust. peak traffic
high load. scenarios. periods.
Synthetic Monitor Automated tests | Pingdom, Proactive
monitoring availability and | at scheduled | Uptrends, New | detection of
speed along | intervals. Relic Synthetics. | service
predefined disruptions.
routes.
Real-user Analyze actual | Client-side Google UX optimization
monitoring user behavior in | telemetry Analytics, based on real-
(RUM) real-time. collection. Datadog RUM, | world usage data.
New Relic.

The intersection of diverse testing strategies enables e-commerce sites to address QA from
multiple dimensions — functional correctness, stress testing, and on-the-fly user friendliness. Rather
than relying on one method, effective QA frameworks integrate automated scenario testing, robust
API tests, active infrastructure monitoring, and behavior-based analytics to ensure system resilience
and end-user satisfaction. This multi-layered approach not only reduces the likelihood of catastrophic
failure but also allows for continuous improvement in key business metrics such as conversion rate,
retention, and revenue stability in today's increasingly difficult digital environment.

Organizational and technological integration of QA into DevOps and product workflows

There are new commerce websites in a very dynamic environment — frequent releases, chaotic
changing of user requirements, and constant functional growth require QA practices strongly
ingrained in engineering and business processes. It requires shifting away from mainstream waterfall
testing towards a Shift-left model where quality control begins as early as the definition of
requirements and architectural design stages [4]. One of the QA effectiveness factors most crucial is
its integration within the CI/CD pipeline in a smooth fashion (fig. 2).

Code Build Unit Tests | |Integration Tests| | Deploy to staging | | E2E Tests | | Release | |Monitoring

Figure 2. QA integration points in a typical CI/CD pipeline
Here, automated tests like unit, integration, and end-to-end tests are executed at every stage of
the build and deployment lifecycle, providing instant feedback on artifact quality. Defects are
identified and resolved early in the development cycle, and this reduces the overall cost of errors

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 5

The scientific publishing house «Professional Bulletin»

appreciably. Continuous delivery is enabled by continuous monitoring of system performance and
stability, i.e., Mean Time to Recovery (MTTR), which helps make judgments not only on the number
of incidents but also response time and recovery.

More broadly, QA is increasingly evolving from an isolated technical function into a component
of the product hypothesis itself — actively participating in the formulation and validation of business
ideas [5]. Testing MVP (minimum viable products), conducting A/B experiments, and analyzing user
feedback enable teams to make evidence-based decisions, minimizing the risk of misaligned
priorities. In this context, quality is no longer viewed merely as a «post-development check»,but
becomes a fundamental part of the digital product’s value proposition. This logic is illustrated in
figure 3, which presents the Dev—Test—Business Feedback Loop — showing the integration of
hypothesis generation, development, testing, and real-time user feedback.

Product
Hypothesis

Product MVP
Refinement Development

Automated
Testing &
A/B Testing

Figure 3. Dev — Test — Business feedback loop in product quality lifecycle

To assess the maturity of a QA infrastructure, two such critical measures are employed: Defect
Leakage Rate and Mean Time to Recovery (MTTR). The former measures the rate of defects that
escape detection during the test process and are subsequently discovered in production, serving as a
measure of poor test coverage or inefficiency in the testing process. The latter measures the pace of
returning a system to usual operation following a failure by a team, and thus indicates the operational
resilience of the company. Combined examination of these metrics provides not only an estimate of
the software quality per se, but also turns into a quantitative basis for the justification of investment
in test automation and additional QA development to business stakeholders. In the context of
increasing complexity and digital risk exposure in e-commerce systems, it is essential to align
technical quality metrics with broader models of financial and operational risk management. The use
of artificial intelligence in risk analysis offers practical approaches for anticipating failures and
optimizing decision-making in digital environments [6].

Qualitative impact of software quality on e-commerce platform profitability

High software quality exerts a broad economic impact on the performance of e-commerce
websites. It directly impacts — through diminished failure loss and improved conversion — and
indirectly impacts — by creating greater customer trust, increased purchase frequency, and reduced
support expenditures. In an economy with limited space for errors, investments in QA processes are
not perceived as costs anymore but rather as profitability and ROI drivers [7].

From an economics perspective, the underlying effect of quality arises from reducing the
incidence of transaction failure, particularly in mission-critical user flows such as registration, search,
checkout, and payment. Even minor deficiency in these places can disrupt the journey of the user and
lead to direct revenue loss. As per industry estimates, adding as little as 0,1% in availability for a site

User Feedback
Analysis >

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 6

The scientific publishing house «Professional Bulletin»

with over 1 million daily hits can increase tens of thousands of dollars in additional monthly profits.
Increased test coverage and automated testing deliver reliable system response under varying load,
thereby rendering essential performance metrics such as conversion rate and AOV more stable.

One of the other noteworthy points is the UX optimization from QA-driven insights. RUM
helps determine behavioral patterns and systemic problems across geographies, devices, and access
channels. They are not only applied for defect resolution but also for determining product roadmap
priorities, which have direct implications on customer retention and maximizing LTV.

Also noteworthy is the effect that adult QA practices have in reducing the cost of operations.
Defect detection in the CI phase is 6-15 times less expensive than fixing the same errors at the time
of production. Furthermore, an uptime platform minimizes the load on technical support teams,
lowers SLA violations, and lowers escalation levels — resulting in a direct effect on improved business
margins. Indicators such as Defect Containment Effectiveness (DCE) and Cost of Quality (CoQ)
provide for a quantitative assessment of the effectiveness of QA investment in terms of financial
results.

Also QA contributes to profitability by accelerating time to market. Automated regression and
functional testing shorten release cycles, allowing for faster hypothesis validation and product
iteration. This is particularly critical for platforms relying on dynamic pricing, personalized
marketing, and rapid feature experimentation.

In summary, high-quality software is not merely a technical attribute — it is a strategic asset for
any e-commerce platform. The maturity of QA processes directly determines a business’s capacity to
adapt, scale, reduce losses, and generate sustainable revenue. Embedding quality metrics into
business analytics and executive reporting is becoming an essential practice for managing digital
product profitability.

Comparative impact of testing practices on key metrics of e-commerce platforms

Against the backdrop of the accelerating rhythm of digital consumption and rising user
expectations, e-commerce platforms are compelled to adopt diverse testing routines in order to deliver
technical robustness and business competitiveness. They vary in efficiency depending on the maturity
level, integration into product workflows, and suitability for the type of platform (e.g., B2C vs. B2B,
omnichannel complexity).

To support strategic planning of QA infrastructure, the impact of some testing practices on
performance and business metrics should be evaluated. The table 2 presents the comparative
evaluation of the impact of various testing strategies on three main dimensions: time-to-market
(TTM), system stability, and business performance (conversion rate, ROI, and other related metrics).

Table 2
Enhanced technical comparison of testing practices in e-commerce [8, 9]
Testing practice | Time-to-market | System stability Conversion / Cost efficiency /
impact effect ROI influence scalability
Manual Low (1-2 | Moderate Low (few | Low (labor-
regression testing | releases/month). | (limited depth, | business insights, | intensive, hard to
human error- | limited scale).
prone). scalability).
Automated E2E | Medium (weekly | High (broad | Medium Medium-High
testing deployments). coverage of key | (improves trust | (requires setup,
user journeys). and flow | pays off at scale).
continuity).
CI/CD pipeline | High (daily or | Very High (real- | High (fewer | Very High
QA integration continuous time validation, | rollbacks, better | (automated,
delivery). shift-left model). | user stability). scalable,
developer-
aligned).
Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 7

The scientific publishing house «Professional Bulletin»

Testing practice | Time-to-market | System stability Conversion / Cost efficiency /
impact effect ROI influence scalability
Performance /| Indirect (affects | Very High | Medium (better | High (valuable
load testing stability, not | (prevents crashes | UX during peak | for large-scale or
speed). at scale). events). seasonal
platforms).
Production None (post- | Moderate High (exposes | Medium (scales
monitoring release (detects live | real-world with user base,
(RUM + | diagnostics only). | issues, no | bottlenecks). analytics-
Synthetic) prevention). dependent).
A/B testing and | Medium Low (not focused | Very High (data- | Medium (ROI
experimentation | (depends on | on infrastructure | driven UX and | tied to analytics
iteration speed). | faults). revenue and product
optimization). maturity).

The evidence suggests that most strategically important practices are those that are built into
continuous delivery and feedback cycles — i.e., CI/CD test automation, end-to-end automation, and
A/B experimentation. These approaches shorten development cycles with improved system
predictability and driving quantifiable increases in user behavior and revenue results at the same time.

Conversely, stand-alone performance testing and manual testing are viable in resource-
constrained or legacy systems but do not scale well with increasing release frequency and traffic.
Production monitoring, although not strictly a development tool, offers real-world problem detection
in a timely fashion and enables retention through the ability to mitigate UX problems more quickly.

Lastly, testing strategies for e-commerce will need to be tailored to the platform's operating
model, level of maturity, and its resource constraints. This comparison model can be used as a QA
investment prioritization tool and as a basis for leveraging engineering and business teams'
participation in shared performance and profitability goals.

Conclusion

The research determines that long-standing and systematically incorporated testing methods
exert both direct and indirect influences on the functionality and profitability of e-commerce websites
under pressures of heightened online consumption. Implementation of automated testing, adding QA
to CI/CD pipelines, and monitoring and experimentation practices (e.g., A/B testing, RUM) result in
more technical resilience, reduced time-to-market, and improved core business metrics such as
conversion rate, average order value, and customer retention. QA becomes a strategic component of
digital risk management in high-speed release environments with varying load.

Moreover, the study finds that effectiveness of capital and operating expenses varies
significantly based on testing practices chosen. Fragmented or manual practices are low in scalability
and bad at relating with financial performance whereas automated and metrics-based ones allow
higher ROI and SLA incidents reduction. Thus, QA must be regarded as not only a technological
shield, but also as an investment tool of immediate value to the financial sustainability of online
platforms. Valuing QA maturity accordingly into digital planning is thus a critical factor for
maintaining long-term competitiveness within e-commerce.

References

1. E-commerce Software Market Size & Trends / Grand View Research // URL:
https://www.grandviewresearch.com/industry-analysis/e-commerce-software-market =~ (data of
application: 13.08.2025).

2. Abhilash V., Venkat S.H., Nishal S., Rajagopal S.M., Panda N. E-commerce
evolution: Unleashing the potential of serverless microservices // 2024 15th International Conference
on Computing Communication and Networking Technologies (ICCCNT). IEEE. 2024. P. 1-8.

3. Sidorov D., Kuznetcov I., Dudak A. Asynchronous programming for improving web
application performance // ISJ Theoretical & Applied Science. 2024. Vol. 138. Ne 10. P. 197-201.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 8

https://www.grandviewresearch.com/industry-analysis/e-commerce-software-market

The scientific publishing house «Professional Bulletin»

4, Lan Q., Kaul A., Pattanaik N.K.D., Pattanayak P., Pandurangan V. Securing
Applications of Large Language Models: A Shift-Left Approach // 2024 IEEE International
Conference on Electro Information Technology (eIT). IEEE. 2024. P. 1-2.

5. Safarli N.Z. Artificial intelligence in financial risk analysis: theory and practice //
Professional Bulletin: Economics and Management. 2025. Ne 1/2025. P. 46-53.

6. Mirjat N.A. Quality Assurance in Devops Environments: Strategies, Tools, And Best
Practices // Multidisciplinary Science Journal. 2024.Vol. 1. Ne 01. P. 60-65.

7. Jin L., Chen L. Exploring the impact of computer applications on cross-border e-
commerce performance /I ITEEE Access. 2024. Vol. 12. P. 74861-74871.

8. Larsen N., Stallrich J., Sengupta S., Deng A., Kohavi R., Stevens N.T. Statistical

challenges in online controlled experiments: A review of a/b testing methodology // The American
Statistician. 2024. Vol. 78. Ne 2. P. 135-149.
9. Bolgov S. Automation of business processes using integration platforms and backend

technologies // International Research Journal of Modernization in Engineering Technology and
Science. 2024. Vol. 6(12). P. 3847-3851.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 9

The scientific publishing house «Professional Bulletin»

UDC 004.4

OPTIMIZATION OF FRONTEND APPLICATION PERFORMANCE:
MODERN TECHNIQUES AND TOOLS

Garifullin R.
bachelor’s degree, Saint Petersburg electrotechnical university
«LETI» (Saint Petersburg, Russia)

olTuMuMn3AIUA NPON3BOAUTEJIBHOCTHU ®POHTEH/I-
MNPUJIOKEHUMN: COBPEMEHHBIE TEXHUKW U UHCTPYMEHTDI

I'apu¢gyanun P.III.

oakanasp, Cankm-Ilemepbypackuii 20cy0apcmeeHHblll d1eKmMpPOmexHu4ecKutl
yuugepcumem «JISTU» um. B. U. Ynvanosa (/lenuna)

(Canxm-Ilemep6ype, Poccus)

Abstract

This study examines how modern performance optimization techniques influence the efficiency
of frontend applications. Key techniques such as code splitting, lazy loading, tree shaking, resources
minimization and compression, use of modern bundlers (Webpack, Vite), and use of Content Delivery
Networks (CDN) are examined. The influence of these methods on key performance metrics is
analyzed. Additionally, research and real-world case studies are considered to illustrate the effects of
both optimization strategies and loading delays on user behaviour, engagement levels, and business
indicators.

Keywords: performance optimization, frontend applications, code splitting, lazy loading, tree
shaking, Content Delivery Network (CDN).

AHHOTAIUSA

B nmanHOW craTthe UCCIeAyeTCs BIMSHUE COBPEMEHHBIX METOJIOB ONTHUMH3AINH
MIPOM3BOIUTENFHOCTH Ha 3((eKTUBHOCTH paboThl (PpoHTEeHA-TpUIOKeHuil. PaccmarpuBarorcs
KJIIOUEBBIC TEXHUKH, TAKHE KaK pa3felieHHe KoJa, JICHUBAas 3arpy3Ka, METO YCTpaHEHHsI MEPTBOTO
KO/a, MUHUMU3AIUS M CXKATHE PECypcoB, UCIOIb30BaHUE COBpEeMEHHBIX cOopmukoB (Webpack,
Vite) u BHenpenue uH@pactpyktypbl Content Delivery Network (CDN). M3yuaercs poib 3TuX
METOZIOB HA OCHOBHBIC METPHUKH MPOM3BOIUTEIBHOCTH. PaccmaTpuBaroTcst HCCIENOBaHUS U
NPAaKTUYECKHE TNPUMEPHI, JEMOHCTPUPYIOIINE BIUSHHE KaK CTpAaTerMid ONTHMU3ALWHU, TaK W
3aJIepKeK B 3arpy3Ke Ha MOBEJICHHE MOJIb30BaTeleH, ypOBEHb BOBJICUCHHOCTH M OM3HEC-TIOKA3aTENH.

KiawuyeBble ciaoBa: onTUMM3alMs — NPOU3ZBOAMTENBHOCTH, (DPOHTEHI-TPUIIOKEHUS,
paszeneHue Koja, JIeHUBas 3arpys3Ka, MeToJ] ycTpaneHus: meptBoro kona, Content Delivery Network
(CDN).

Introduction

Complexity of web applications has grown exponentially, along with their resource demands.
Fast load times and usability are expected by users, and search engines like Google include
performance measures in site rank algorithms. Frontend application performance is most important
to user experience, conversion, and a whole host of key performance measures; therefore,
performance must be optimized.

Recent advancements in frontend tooling and methodology have enabled sophisticated
techniques in load performance optimization, data transfer minimization, and interface
responsiveness. Code splitting, lazy loading, tree shaking, and the use of modern-day bundlers such

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 10

The scientific publishing house «Professional Bulletin»

as Webpack and Vite have been the most successful techniques in practice. With proper use, such
techniques have high potential for loading duration reductions, consumption minimization, and
enhancing web application usability. This purpose of this article is to examine contemporary methods
for optimizing frontend performance.

Main part. Theoretical foundations of frontend performance optimization

Web application performance is a good indicator of their success and has direct implications
for user experience, engagement, and achievement. Taming load time facilitates seamless interaction,
whereas latency invites frustration and diminished retention. As more users anticipate instant access
to digital content, frontend performance optimization has become essential to maintain
competitiveness and achieve high usability [1].

Poor performance also affects search engine optimization (SEO). Google introduced Core Web
Vitals in 2021, which is a set of metrics to use when measuring the user experience, with a strong
emphasis on loading speed. Faster web apps rank better in search, gaining more organic traffic and
visibility. Moreover, slow interfaces negatively affect the accessibility of web applications. Users
with slow internet connections or outdated devices encounter difficulties when loading heavy pages,
making applications less inclusive. This issue is relevant for global services operating in regions with
unstable internet connectivity.

To objectively assess web application performance, key metrics have been developed to
measure various aspects of user experience (table 1).

Table 1
Web performance metrics [2, 3]
Metric Description Recommended threshold

Time to First Byte | Time taken for the browser to receive the <200 ms
(TTFB) first byte of the response from the server.
First Contentful Paint | Time taken to render the first visible <1.8s
(FCP) element (text, image) on the screen.
Largest Contentful Paint | Time taken to load the largest visible <25s
(LCP) content (image, text block) on the page.
Cumulative Layout | Measures visual stability by calculating <0.1
Shift (CLS) unexpected layout shifts during page load.
Time to Interactive | Time taken until the page becomes fully <5s
(TTDH interactive (when wusers can interact

without delay).
Interaction to Next Paint | Evaluates the delay between a user <200 ms
(INP) interaction (click, keypress) and the next

visible update on the page.

Optimized websites offer real-time loading and smooth interface performance, which reduce
the bounce rate and improve session duration. Users expect a site to load in three seconds, and each
additional second of lag significantly increases the page abandonment rate. A Google research found
that slowing down the load time of mobile pages from one to five seconds boosts the likelihood of

bounce by 90% (fig. 1).

Ne 3/2025

Journal «Professional Bulletin. Information Technology and Security» 11

The scientific publishing house «Professional Bulletiny

1s to 10s

1s to 65

1s to 5s

1s to 3s

0 20 40 60 80 100 120 140
Figure 1. Increase in bounce probability based on page load time, % [4]

Performance is also a key factor in mobile applications and Progressive Web Apps (PWA).
A significant proportion of visitors access websites through mobile devices, many of which have
recurring low network bandwidths compared with desktops. Optimising web applications will
become increasingly important for enhancing smartphone usability, particularly in high volumes of
mobile usage regions.

There have been a variety of specialist tools developed to evaluate and tune web application
performance, with evaluation facilitated through automation and performance constraint
identification. Google Lighthouse is a test tool that audits the performance, SEO, and accessibility
of web applications and gives detailed optimization recommendations. WebPageTest is a tester that
conducts page load speed tests in real-world scenarios on various devices, network types, and
geographies. Chrome DevTools is a group of developer tools that come pre-installed with the
Chrome browser and allow one to analyze performance metrics, resource loading, and blocking
operations. Core Web Vitals Report, in Google Search Console, provides one with a view of Core
Web Vitals metrics of website pages. PageSpeed Insights is another tool at Google that tests page
speed and gives suggestions to enhance it.

Using the above tools, developers are able to perform unbiassed frontend application
performance assessments and make evidence-based optimisation decisions. Regular measurement of
key performance indicators identifies performance hotspots, optimises optimisation methods based
on real user profiles, and provides consistent application response under increasing traffic and
computational demands.

Modern techniques and tools for optimization

With the growing complexity of web applications comes a larger volume of data to be
transferred, which has an unfavorable impact on loading time and performance. Heavy JavaScript
bundles, resource-intensive resources, and redundant code only add to the load carried by the browser,
further degrading the user experience. To address these issues, developers employ all manner of
optimizations intended to reduce page load latency, remove unnecessary memory usage, and enhance
interface responsiveness [5].

One of the most critical frontend application optimization techniques is code splitting, which
allows a portion of an application to be loaded only when needed at a particular time. This minimizes
data transferred and page loads. Code splitting is done through dynamic imports (import()), and thus
modules are loaded on demand. Well-known frameworks such as React, Vue, and Angular have
native support for dynamic loading. Dynamic loading allows the browser to load components or pages
on demand rather than loading the entire application code at boot. Code splitting comes in handy for
Multi-Page Applications (MPA) and Single-Page Applications (SPA) with massive amounts of
functionality where a significant amount of functionality may not be utilized during the first load.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 12

The scientific publishing house «Professional Bulletin»

Lazy loading is implemented for code and also for media resources such as images and videos
to reduce the first-load time and enhance the performance overall. Lazy loading would only load non-
critical resources when they are needed, thereby lessening the data loaded at page startup, which is
extremely beneficial for media-rich sites. In HTMLS, deferred image loading could be implemented
through the use of the attribute loading="1azy":

Lazy loading significantly reduces the initial data transferred and improves key performance
metrics such as LCP [6]. For videos and frames, lazy loading is possible by introducing the
loading="lazy" attribute or implementing JavaScript-based intersection observers to control when
resources are loaded. This technique can be especially handy for long-scrolling pages, news websites,
blogs, and e-commerce websites, where numerous images or videos may not be visible right after
page load.

Tree shaking is a method that eliminates dead code at build time. The method works
exceptionally well with ES6 modules (ECMAScript 2015) since they allow static dependency
analysis, which makes it easy for bundlers to identify and remove unused exports. Tree shaking is
natively supported by new build tools such as Webpack, Rollup, and Esbuild. In Webpack, for
example, tree shaking is automatically enabled in production mode but turned off in development
mode for the sake of debugging. Also, tree shaking can be further improved by configuring the
sideEffects field in the package.json file so that files with no side effects are tree shaken in an optimal
way. By removing dead code, this mechanism significantly reduces the final bundle size, which
enhances loading performance and speed, especially in projects that have enormous external libraries.

A Content Delivery Network (CDN) is a server network geographically dispersed with the
aim of serving static files from closer geographic locations to users in a bid to reduce latency and
enhance web application reliability. A cache and distribution of assets such as images, stylesheets,
JavaScript files, and even entire HTML pages at multiple edge locations reduces content fetch time
significantly. This approach minimizes reliance on a single origin server, sharing traffic loads and
increasing tolerance towards sudden peaks in high traffic or DDoS attacks. Additionally, most modern
CDNs are supplemented with compression techniques including Brotli and Gzip, adaptive image
compression, and HTTP/3, minimizing load time even more.

Minification and file compression make data transmitted smaller, thus faster page loading
speed and performance. JavaScript and CSS minification is elimination of unwanted whitespace,
comments, and unused code, which is easily accomplished with plugins such as Terser for JavaScript
and CSSNano for CSS. Besides shortening the load of the script, the minification decreases the
payload overall, which enhances the frontend performance and server response time. Gzip and Brotli
compression algorithms also improve performance through HTTP response size compression prior to
transmission to the client. Brotli provides higher compression ratios for text content like HTML, CSS,
and JavaScript, with bandwidth efficiency being significantly increased.

Frontend performance is one of the strongest drivers of user experience, engagement, and
business success for web applications. With first-order performance metrics knowledge and a set of
specialized analysis tools at their disposal, developers can monitor bottlenecks and tune specifically.
Through continuous monitoring and optimization of frontend performance, companies can improve
load speed, accessibility, and competitiveness in a more demanding online marketplace.

Analysis of performance optimization and its impact on user engagement in companies

Performance optimization is a critical element in user action and business achievement. World
case studies and research findings illustrate how anticipatory optimizations and performance lags
affect user behavior, conversion rates, and system performance.

Netflix conducted a performance optimization initiative that was focused on making the
unauthenticated user loading experience better [7]. The primary aim was to optimize TTI, which is
an essential metric that tracks how long it takes a page to be interactive. For this purpose, the
development team implemented prerendering and critical rendering path optimization. These
improvements resulted in faster initial content presentation as well as generally improved perceived
loading speed.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 13

The scientific publishing house «Professional Bulletin»

Research by Google further confirms that even minor delays in page loading can significantly
impact user behaviour [8]. In an experiment, the company actually delayed search result loading times
by 100-400 milliseconds to see how user behavior altered. The results were that 100 milliseconds of
delay dropped search behavior by 0,2% during the first six weeks and 400 milliseconds dropped
search behavior by 0,6%.

Besides, the adverse impact became more potent over time: users who were repeatedly faced
with prolonged page loads kept reducing use over time, and even after performance was restored,
they failed to return to levels of engagement before. Surprisingly, after six weeks of exposure to a
400-millisecond delay, users kept conducting 0,21% fewer searches during the following five weeks
after the experiment ended.

A 2020 Deloitte study further underscores the significance of load speed optimization [9]. It
demonstrated that improving mobile page loads by just 0,1 seconds had a return of 8,4% increase in
conversion rate in retail and 10,1% in travel. Mean order value also increased by 9,2% in retail and
1,9% in travel, showing the real financial benefit of performance optimization. These findings
confirm the key role of frontend performance improvement to efficiency, user engagement, and
overall profitability in web applications.

Conclusion

Optimization of frontend application performance is a crucial aspect of rendering a user's
experience fast, business metrics improved, and the overall performance of web applications.
Emerging mechanisms such as code splitting, tree shaking, lazy loading, and employing advanced
bundlers and CDN greatly reduce page load times and render the interface more responsive. Empirical
evidence from top tech companies shows that performance investments carry a significant weight
regarding high conversion rates, low bounce rates, and overall improvement in terms of user
experiences. As web app usability and speed are in high demand, developers committed to offering
high-quality digital products must ensure continuous improvements in terms of optimization
techniques.

References

1. Sidorov D., Kuznetcov 1., Dudak A. Asynchronous programming for improving web
application performance // ISJ Theoretical & Applied Science. 2024. Vol. 138. Ne 10. P. 197-201.

2. Wehner N., Amir M., Seufert M., Schatz R., A vital improvement? Relating Google's
core web vitals to actual web QoE // 2022 14th international conference on quality of multimedia
experience (QoMEX). IEEE. 2022. P. 1-6.

3. Dobbala M.K., Lingolu M.S.S. Web Performance Tooling and the Importance of Web
Vitals // Journal of Technological Innovations. 2022. Vol. 3. Ne 3.
4. Find Out How You Stack Up to New Industry Benchmarks for Mobile Page Speed /

GoogleAPIs / URL: https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-
benchmarks.pdf (date of application: 24.08.2025).

5. Dudak A. Object-oriented design patterns in front-end development // International
independent scientific journal. 2024. Ne 66. P. 67-70.
6. Bara R.M., Boiangiu C.A., Tudose C. Analysing the performance impacts of lazy

loading in web applications // Journal of Information Systems & Operations Management. 2024. Vol.
18. Ne 1. P. 1-15.

7. Ahmed S., Aziz N.A. Impact of ai on customer experience in video streaming services:
A focus on personalization and trust // International Journal of Human. Computer Interaction. 2024.
P. 1-20.

8. Speed Matters / Google Research // URL: https://research.google/blog/speed-matters/
(date of application: 24.08.2025).
9. Milliseconds Make Millions / Deloitte // URL:

https://www.deloitte.com/ie/en/services/consulting/research/milliseconds-make-millions.html (date
of application: 24.08.2025).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 14

https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://research.google/blog/speed-matters/
https://www.deloitte.com/ie/en/services/consulting/research/milliseconds-make-millions.html

The scientific publishing house «Professional Bulletin»

UDC 004.4

COMPARATIVE ANALYSIS OF PERFORMANCE AND SCALABILITY OF
SYNCHRONOUS AND ASYNCHRONOUS INTERACTIONS IN
MICROSERVICE ARCHITECTURE

Smirnov A.
master’s degree, Perm national research polytechnic university
(Perm, Russia)

CPABHUTEJIbHBIN AHAJIN3 TPOU3BOJUTEJIBHOCTHU U
MACIHITABUPYEMOCTHU CUHXPOHHBIX U ACUHXPOHHBIX
B3ANMOJIEVICTBUM B MUKPOCEPBUCHOM APXUTEKTYPE

CMmupHoB A.B.
mazucmp, Tlepmckuii HaYUOHATLHBIU UCCTIE008AMENbCKULL
noaumexuuyeckutl ynueepcumem (llepmo, Poccus)

Abstract

This paper explores the choice between synchronous and asynchronous interaction models in
microservice architecture, focusing on their impact on system performance and scalability. Key
characteristics such as latency, throughput, and scalability under varying loads are discussed. The
interaction models based on REST API and event-driven approaches are compared, emphasizing their
advantages and disadvantages in the context of high-load distributed systems. The analysis presented
aids in selecting the optimal interaction model based on system-specific requirements, such as data
consistency, fault tolerance, and processing efficiency.

Keywords: microservice architecture, synchronous interactions, asynchronous interactions,
performance, scalability, REST API.

AHHOTAIUSA

B cratbe mpoOBOAMTCS CPAaBHEHHME MEXKIYy CHHXPOHHBIMH M ACHHXPOHHBIMH MOJAEISMU
B3alMOJCICTBUS B MUKPOCEPBUCHOM apXUTEKType, aKLIEHTUPYETCsS BHHUMAHME HA MX BIIMSHUU Ha
MIPOM3BOIUTENIFHOCT M MAaCHITA0MpyeMOCTh cucTeM. ONMCHIBAIOTCSA KIIOYEBBIE XapaKTEPUCTUKU
3THUX MOAXOJIOB, TAKUE KAaK MEXaHU3MBI 33JIepXKEK, MPOITYCKHAs: CIOCOOHOCTh M MaCIITA0OMPyEMOCTh
IIPY pa3InyYHbIX Harpy3kax. CpaBHUBAIOTCSA MOJIENH B3auMoIelcTBuUs, ocHOBaHHbIe HA REST API n
event-driven mToaXoAax, € aKLUEHTOM Ha MX NPEUMYIIECTBAa M HEIOCTaTKU B KOHTEKCTE
BBICOKOHArPY>KEHHBIX pPAacIpe/eIeHHBIX CUCTeM. lIpesncTaBieHHBI aHaIM3 MMOMOraeT B BhIOOpE
ONITUMANIbHOW MOJIENIM B3aWMOJICHCTBHSA B 3aBHCHUMOCTH OT cHelM(UKH TpeOOBaHHUN K CHUCTEME,
TaKHUX KaK COTJIACOBAHHOCTH JIAHHBIX, OTKa30yCTOWYMBOCTh U APHEKTUBHOCTH 0OPaOOTKH.

KiroueBble cioBa: MHUKpPOCEpPBUCHAs apXUTEKTypa, CHHXPOHHBIE B3aMMOJAEHUCTBHA,
ACHMHXPOHHBIE B3aUMOJICHCTBHS, IPOU3BOIUTEIHLHOCTH, MaciuTadbupyemocts, REST APL

Introduction

New information systems, which are created on the basis of the microservice architecture, must
select the most suitable mechanism of interaction between services. There are various versions of
interaction: synchronous (for example, REST) and asynchronous (according to the event exchange
principle). They are both pros and cons in terms of system performance, scalability, data consistency,
and load tolerance. One of the most significant issues is how to balance the trade between

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 15

The scientific publishing house «Professional Bulletiny

predictability and strong consistency on synchronous calls against flexibility at potentially higher
complexity using asynchronous interaction.

The relevance of this research stems from rising needs for dealing with large amounts of
information and high availability in today's distributed systems. The proliferation of applications with
microservices orientation calls for the understanding of how diverse interaction models affect delay
on messages upon sending, data consistency, and resource utilization.

The purpose of this research is to make a comparative analysis of scalability and performance
of two interaction models of microservices. For these purposes, theoretical ideas of their work are
used, primary performance indicators are analyzed, and the impact of choosing an interaction model
on data consistency is researched. The research is carried out with the help of analysis of available
scientific literature, study of theoretical interaction models and their assessment based on most
significant characteristics.

Main part. Theoretical basis of interactions in microservice architecture

Microservice architecture is a software development style where a system is broken down into
tiny independent services that exchange information with one another using network protocols. The
interaction mechanism between services significantly influences the system's performance, data
consistency, and scalability. These come in two broad forms: synchronous interaction, involving a
direct request and response, and asynchronous interaction, involving sending and receiving messages
or events and no feedback being provided immediately.

The synchronous approach, predominantly used via the REST API (Representational State
Transfer), offers tight coupling among services. In the process, the client sends a request to the server
and then waits for the reply before further moving ahead to execute its logic. The mechanism is simple
to implement in deterministic processes as it offers predictability to operations and simplifies error
management (fig. 1).

GET | POST | PUT | DELETE HTTP REQUEST

. HTTP RESPONSE
Client

Application data model

Client Server
Figure 1. REST API framework [1]

However, extensive reliance among services creates greater delays as the weight increases. The
greater the number of calls placed, the higher the number of REST requests that will form «cascades
of delays» since every request will continue to hinder operation until it is received. Bottlenecks and
performance are realized under high traffic densities in a system.

The asynchronous approach, however, relies on sending messages between services without the
anticipation of a prompt response. This is achieved using message brokers such as Apache Kafka,
RabbitMQ, or AWS SQS. In asynchronous systems, the sender sends the message to a queue where
it is picked up by the receiver for processing. This method removes the dependency of services on
each other and makes them fault tolerant, as services will keep functioning regardless of whatever
state other parts are in (fig. 2).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 16

The scientific publishing house «Professional Bulletin»

Continue working

Don't block current thread.

& B ARESSN
g <
2 .
- ‘\\!‘ Server A
— pe— I §
&
: |G
w - -
| ™ v ?4 Server B
S

Figure 2. Asynchronous approach framework [2]

However, this approach makes it difficult to ensure strict consistency of data, as the operation
can stop at a random point. Distributed systems employ eventual consistency approaches where
consistency is achieved through replication and repeated execution of operations on failure.

Another factor while choosing an interaction model is the scalability issue. Horizontal scaling
with additional service replicas and load balancing in synchronous systems means additional
management costs of extra infrastructure. However, in asynchronous systems, by virtue of the
message queues, the load gets dynamically distributed with flexible reclamation of resources across
nodes [3].

Thus, synchronous or asynchronous interaction is selected based on the type of system and its
performance requirements. Synchronous is appropriate for transactional operations with high
consistency requirements, while the asynchronous method is better suited for highly loaded
distributed systems where reducing interdependence between services is important.

Performance and scalability metrics

Measuring the efficiency of interactions in a microservice system is based on analyzing key
indicators that reflect query processing time, the use of computing capacities, and the system's
adaptability to changing workloads. Among them, response time, bandwidth, and infrastructure
costs are particularly significant. The choice between synchronous and asynchronous interaction
significantly affects these parameters, which is why it is necessary to study them in detail.

One of the more important performance characteristics is response time, or latency, which
measures how long it takes from the time a request is sent to the time a response is received. Response
time in synchronous systems is directly proportional to the number of services involved in the call
chain. For example, in sequential REST communication, where one request takes 100 ms and five
services must complete the operation, the overall delay can reach 500 ms, without taking network
overhead into account [4]. In asynchronous systems, delays can be distributed over time, reducing
the load on individual components, but in scenarios with strict consistency requirements, this can lead
to an increase in overall latency.

Another important metric is throughput — the number of requests processed in a time unit.
Knowledge of this metric in synchronous systems is limited by server capacity and the number of
simultaneous connections, while in asynchronous architectures it can be enhanced by scalable
message queues. For example, the use of Apache Kafka allows processing tens of thousands of
messages per second with effective load balancing [5]. However, high throughput does not always
imply low latency and requires careful consideration of usage scenarios.

Scalability is significantly affected by the way the computing resources are used. In
synchronous architectures, each blocked thread consumes RAM and CPU cycles, which lead to
resource exhaustion under high load. Asynchronous models use non-blocking processing and
distributed queues to use resources more effectively, with less memory consumption under the same
load. This is at the expense of extra state negotiation mechanisms and message relaying in case of

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 17

The scientific publishing house «Professional Bulletin»

failures, which may make the system more complex. However, systems designed to scale usually
have these mechanisms in place anyway.

Comparative analysis of REST and event-driven interactions

The selection of REST interaction or event-driven communication within a microservice
architecture depends on differences in the request processing mechanisms, delay of data transfer, fault
tolerance, and scalability. Each of them has its advantages and disadvantages that should be taken
into account during high-load system design.

REST adopts a synchronous pattern of interaction, in which the client sends an HTTP request
and then waits for the server's response. This is more convenient to deal with errors and maintain the
system under control, as every call means real-time data processing. But REST in large distributed
systems is plagued by «cascading dependencies», where one service downtime can lead to
unavailability of a series of connected components. For example, if the auth service does not respond,
it blocks access to all dependent services.

Unlike REST, event-driven systems utilize asynchronous message-based communication via
brokers such as Apache Kafka or RabbitMQ. Here, services publish events that can be handled by
one or more subscribers. This increases scalability and fault tolerance because services are not
dependent on other services being ready immediately. The complexity of implementation is greater
as coordination of the state between different components of the system needs to be done.

Also, in server and client-side applications, RxJS (Reactive Extensions for JavaScript) and
NgRx (Angular Reactive Extensions) enable efficient data management and event flow, and thus they
are useful tools in event-driven systems. RxJS enables you to create reactive data flows and manage
asynchronous computation, and NgRx implements the Redux pattern in Angular applications so that
state is easier to manage in an async environment. These tools demonstrate the reactive programming
principles, being fault-tolerant and scalable without blocking the threads. They are especially useful
with message-driven architecture, where effective system state management and real-time event
processing are required [6].

From a performance perspective, REST-based systems can have less latency with minimal
services since the response to the request is immediately available. With higher load, however, REST
begins to suffer: an increase in the number of concurrent connections leads to blocking threads and
response time. In event-driven architecture, the load is dynamically distributed, and asynchronous
processing allows you to enhance the system throughput. For example, in research, transitioning to
the event-driven model lowered the utilization of processor resources by 77,5% and lowered average
response delay with large load [7].

The second distinction lies in data consistency mechanisms. Within REST-based systems,
transactions are usually performed in real time with strict consistency. Event-driven systems usually
apply the event consistency model, in which updates are broadcasted with a delay. This can cause
temporary inconsistency in data between services, which is of critical importance for banking systems
or online shopping websites. Thus, therefore, the REST style is still favored for tightly consistent and
integrated systems, but event-driven systems are more scalable and fault-resistant under high loads.

Choosing the optimal approach depending on the usage scenario

The optimum choice between synchronous REST communication and asynchronous event-
driven communication depends on the system's particularities, performance requirements, data
consistency, and fault tolerance. In different situations, one of these approaches may be preferable,
providing the best tradeoff between implementation ease and operational efficiency (table 1).

Table 1

Comparison of approaches based on use case scenarios

Scenario REST (synchronous Event-Driven (asynchronous
communication) communication)
Transactional Suitable for systems where strict | Can be applied in scenarios where
systems data consistency and integrity are | consistency can be temporarily
critical (e.g., banking applications). | compromised, but efficiency is still
required.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 18

The scientific publishing house «Professional Bulletin»

Scenario REST (synchronous Event-Driven (asynchronous
communication) communication)
Real-time Not always optimal as high server | Suitable for real-time event processing
processing load may lead to delays. with minimal latency (e.g., monitoring
systems).

High load systems | Latency may accumulate with an | Suitable for systems with high event
increase in the number of requests. | volumes, such as IoT platforms, as it

Scalability is limited. can handle parallel events efficiently.
Inter-service Problems with cascading | Resilient to failures due to service
communication dependencies where the failure of | independence and ability to process
one service blocks others. events independently.
Handling large | Not always efficient at handling | Suitable for streaming data processing,
data volumes large volumes of data due to | such as real-time data streams, using
scalability limitations. message brokers (e.g., Kafka).
Flexibility = and | May be less flexible in failure | Provides high flexibility and fault
fault tolerance conditions as requests block | tolerance, as services can continue
execution until a response is | processing messages regardless of
received. others' states.

In those applications where data consistency is required to be strict, REST-style interactions
remain the most reliable choice. For example, in banking applications or accounting software, it is
crucial that every transaction is executed in a strictly defined order and does not provide any scope
for inconsistencies. REST supports direct request processing, and ACID guarantees minimize the
chances of incorrect operations. But with more requests, there is a scalability issue, as every service
call threads-blocks until a response is received [8].

Conversely, event-driven systems are extremely effective in cases where a large number of
events have to be processed with very low inter-service dependency. For instance, in processing
systems for streaming data like IoT platforms or analytics services, the utilization of asynchronous
message queues can drastically enhance throughput. In such systems, delays in processing an
individual event are less significant than the ability for horizontal scaling and overload tolerance.

Failure tolerance is another critical feature. Using the REST model, failure of any one of the
primary services can propagate through the system since the clients are expecting a synchronous
response. This necessitates load balancers and retry logic, which is an increased level of infrastructure
complexity. In event-driven systems, losing a service does not obstruct request processing, as events
are stored in message brokers temporarily. However, such architectures require additional
management of event handling and deduplication logic, especially if the data is critical.

Hence, the use of either REST or event-driven is determined by the requirements of a given
scenario. When data consistency with low integration complexity is needed in a system, REST
remains the best choice. When fault tolerance and scalability are crucial in heavy loads, event-driven
interaction is more flexible and efficient in handling events. In some cases, hybrid models combining
both approaches are used with a blend of both depending on operation urgency and latency
requirements.

Conclusion

Comparative analysis of synchronous REST calls and asynchronous event-driven
communications within microservice architecture has shown that the best method is determined by
requirements in terms of performance, scalability, and data consistency. REST provides predictability
as well as high consistency but is limited to blocking calls and therefore reduces its efficiency in cases
of high loads. Event-driven designs allow you to achieve high throughput and fault tolerance but
require additional mechanisms for state matching as well as control over event processing order. In
scenarios that require low latency and deterministic execution of operations, REST remains among
the best solutions. In high parallelism systems and dynamic load, the event-driven design works
better. In some cases, the optimum is a hybrid model that combines the strengths of each to find
balance in consistency, processing velocity, and scalability quickness.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 19

The scientific publishing house «Professional Bulletin»

References

1. Lercher A. Managing API Evolution in Microservice Architecture. // In Proceedings
of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings. 2024. P. 195-197.

2. Soylemez M., Tekinerdogan B., Tarhan A. Microservice reference architecture design:
A multi-case study. // Software: Practice and Experience. 2024. Vol. 54. Ne 1. P. 58-84.
3. Batista C., Morais F., Cavalcante E., Batista T., Proenca B., Rodrigues Cavalcante W.

Managing asynchronous workloads in a multi-tenant microservice enterprise environment. //
Software: Practice and Experience. 2024. Vol. 54. Ne 2. P. 334-359.

4. Traini L., Cortellessa V. Delag: Using multi-objective optimization to enhance the
detection of latency degradation patterns in service-based systems. / IEEE Transactions on Software
Engineering. 2024. Vol. 49. Ne 6. P. 3554-3580.

5. Kafka 2.0 Documentation / Kafka // URL:
https://kafka.apache.org/20/documentation.html (date of application: 18.08.2025).
6. Garifullin R. Application of RxJS and NgRx for reactive programming in industrial

web development: methods for managing asynchronous data streams and application state //
International Journal of Professional Science. 2024. No 12-2. P. 42-47.

7. WellRight modernizes to an event-driven architecture to manage bursty and
unpredictable traffic / Amazon Web Services // URL:
https://aws.amazon.com/ru/blogs/architecture/wellright-modernizes-to-an-event-driven-
architecture-to-manage-bursty-and-unpredictable-traffic/ (date of application: 18.08.2025).

8. ACID Properties in DBMS / Geeks for Geeks // URL:
https://www.geeksforgeeks.org/acid-properties-in-dbms/ (date of application: 18.08.2025).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 20

https://kafka.apache.org/20/documentation.html
https://aws.amazon.com/ru/blogs/architecture/wellright-modernizes-to-an-event-driven-architecture-to-manage-bursty-and-unpredictable-traffic/
https://aws.amazon.com/ru/blogs/architecture/wellright-modernizes-to-an-event-driven-architecture-to-manage-bursty-and-unpredictable-traffic/
https://www.geeksforgeeks.org/acid-properties-in-dbms/

The scientific publishing house «Professional Bulletin»

UDC 004.415: 004.42

DYNAMIC TRAFFIC CONTROL MECHANISMS IN DISTRIBUTED
SYSTEMS AS A MEANS OF ENSURING ADAPTABILITY AND FAULT
TOLERANCE IN DIGITAL INFRASTRUCTURE

Terletska K.
bachelor’s degree, Lviv polytechnic national university
(Lviv, Ukraine)

MEXAHW3MbI JUHAMUYECKOI'O YIIPABJIEHUSI TPA®UKOM B
PACHPEJIEJEHHBIX CUCTEMAX KAK CPEJICTBO OBECIIEUEHUS
AJATITUBHOCTHU U OTKA30YCTOMUYNBOCTHU NP POBOU
NHOPACTPYKTYPBI

Tepaenbka X.B.
bakanasp, Hayuonanvuwiii ynusepcumem «JIb806ckasn nonumexuuxay
(/Iv608, Ykpauna)

Abstract

This article examines modern dynamic traffic control mechanisms in distributed computing
systems as a means of enhancing the adaptability and fault tolerance of digital infrastructure. It
analyzes load balancing algorithms, adaptive rate limiting, low-priority request shedding, and
resource scaling strategies. Special attention is given to the integration of these algorithms into cloud-
native architectures. The article emphasizes the role of observability as a foundational element
enabling the transition from reactive to proactive traffic management. It concludes that the combined
application of these mechanisms establishes a robust architectural foundation for the stable operation
of distributed systems under high-load conditions.

Keywords: distributed systems, traffic management, scaling, fault tolerance, observability,
cloud architectures, digital infrastructure.

AHHOTAIHUSA

B cratbe paccmarpuBaroTCs COBPEMEHHBIE MEXaHU3Mbl JUHAMUYECKOTO YIpaBICHUS
TpauKOM B pPACHPEICIICHHBIX BBIUYMUCIUTEIBHBIX CHCTEMaX KaK WHCTPYMEHT TIOBBIIICHUS
aIaITUBHOCTH M OTKAa30yCTOWYMBOCTH LU(PPpOBOH MHPPACTPYKTYphl. AHATUZUPYIOTCS AITOPUTMBI
OaaHCUPOBKH HArpy3Kd, aJalTHBHOIO OTPaHUYCHHsS] CKOPOCTH, cOpoca HHU3KOMPHOPHTETHBIX
3aMpocoB U MacIITabupoBaHus pecypcoB. Oco0oe BHUMAHKE YACTSETCS UHTETPAIIMH alTOPUTMOB B
oOnauHble apXxuTeKTypbl. [loguepkuBaercs poiab HAOIIOZAEMOCTH KaK CHCTEMOOOPA3YIOIIETO
AJIEMEHTA, TMO3BOJISIIOIIETO MEPEUTH OT PEaKTHBHOTO K TMPOAKTUBHOMY YIIPABICHHUIO TPAPUKOM.
Jlenaercsi BBIBOJL O TOM, YTO COBOKYIMHOCTh OJTHX MEXaHHU3MOB (OpMHpYEeT HaIEKHYIO
APXUTEKTYPHYI0 OCHOBY I YCTOWYUBOTO (DYHKIIMOHHPOBAHHS DPACIPEACTICHHBIX CHCTEM B
YCIIOBUSIX BBICOKOM Harpy3KHu.

KiroueBble ci10Ba: pacripe/e/ieHHbIE CUCTEMBI, yIpaBieHHe TpadhuKoM, MacIITabUpOBaHHE,
0TKa30yCTOMYUBOCTbH, HAOII01aeMOCTh, 00JIaUHbIC ApXUTEKTYPHI, MUPpOBas HHPPACTPYKTYpa.

Introduction

Distributed computing system forms the foundation of digital infrastructure that offers
scalability, availability, and continuity of service under constantly varying network loads. Increasing
growth in data volumes causes traffic variability to increase in significance, where abrupt peaks and

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 21

The scientific publishing house «Professional Bulletin»

irregular distribution of requests are typical. This necessitates the introduction of adaptive traffic
control mechanisms that can appropriately react to external and internal variations in real time without
impacting system performance or reliability.

Conventional static resource allocation techniques have proved ineffective under highly
dynamic load situations, and hence the need for intelligent and adaptive mechanisms. Load balancing
algorithms, adaptive request throttling, low-priority request shedding, and predictive scaling based
on behavioral traffic analysis are gaining particular importance as key techniques in this context.

The goal of this study is to analyze and systematize dynamic traffic management mechanisms
in distributed systems, with a focus on enhancing adaptability and fault tolerance. The research covers
both the algorithmic principles of these mechanisms and their practical implementation in cloud-
native environments, including Kubernetes, Istio, Envoy, and other components of modern digital
platforms.

Main part. Traffic management in distributed architectures

Traffic control in distributed computing systems is a service whose impact is directly felt on
the stability and performance of the entire digital infrastructure. The most common reason for
instability is the sudden spikes in load that occur due to seasonal, day-by-day, or event-driven
fluctuations in user traffic. Flash sales, live streaming, and viral social network clips are typical
examples that can produce an immediate flood of incoming requests.

Another critical parameter is request asymmetry — a state of affairs whereby certain
components of the system is disproportionately heavily loaded compared to other components. This
disparity can be due to heterogeneous user patterns, non-uniform data distribution, or application-
level semantics. Added on top of this is the distributed nature of modern designs: geo-distributed
nodes, microservice-based deployments, and independently scaling components imply that request
handling coordination has to withstand and adjust to adaptive routing schemes.

In such decentralized environments, ensuring trusted coordination and authentication between
distributed components becomes increasingly important. Decentralized authentication methods
improve system resilience by reducing dependency on centralized control points and enabling
autonomous trust verification within distributed network topologies [1].

In response to these challenges, distributed systems actively employ load balancing
mechanisms that ensure the even distribution of incoming requests across available service instances
or nodes (fig. 1).

+db-c

Internet Load

D balancer

Clients

Servers

Figure 1. Load balancing architecture
Load balancing may also be done at the network layer (L4) as well as application layer (L7),
depending on criteria such as request path, headers, client IP, and target service's workload. Existing
deployment such as Envoy, NGINX, and HAProxy already support the use of algorithms such as
round-robin, least connections, random, and user-supplied custom routing based on user-specified
values. Even distribution evenness is also a concern in dynamically scalable systems but not the sole

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 22

The scientific publishing house «Professional Bulletiny

consideration; latency, geographical node proximity, and network anomaly resilience also must be

taken into account.
Alongside load balancing, adaptive throttling mechanisms are increasingly being adopted to
control service throughput under overload conditions (fig. 2).

Requests

Service

Rejected

v

Figure 2. Adaptive throttling mechanism
These systems change the volume of incoming requests adaptively based on current load,
response latency, or errors being experienced. As compared to fixed rate limiting, the adaptive version
provides more dynamic utilization of resources and reduces the likelihood of failure in the event of
brief traffic surges.
A complementary technique is request shaping, which involves the preliminary classification
and prioritization of incoming requests (fig. 3).

Classification

. . r\High

Incoming —1 - ®Priority
Requests

—_— . Medium
f @Priority

: @LOW
Priority

Figure 3. Request shaping architecture

For example, lower-priority tasks such as background sync or analytics requests may be delayed
or batched, and higher-priority operations would be done as fast as possible. This approach improves
worldwide service quality and avoids system measurements from exceeding operational limits even
during constrained computational resources.

Thus, effective traffic management in distributed systems requires the joint usage of load
balancing, adaptive throttling, and selective request processing methods. The methods mentioned
above facilitate rapid response to traffic changes and ensure continuous service availability.

Scaling as a response to increasing load

Under conditions of variable network traffic, the scaling of computational resources is one of
the fundamental approaches to ensuring fault tolerance and maintaining the performance of
distributed systems. It enables infrastructure to adapt to current traffic volumes, thereby reducing the
risk of service degradation when nominal throughput capacity is exceeded. In engineering practice,
two principal types of scaling are distinguished: vertical and horizontal (table 1).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 23

The scientific publishing house «Professional Bulletin»

Table 1

Comparison of horizontal and vertical scaling [2, 3]

Parameter Horizontal scaling (scale-out) Vertical scaling (scale-up)

Principle Adding new instances (nodes, pods, | Increasing resources (CPU, RAM, 1I/O) of
containers) that work in parallel and | an existing node to handle more workload.
share traffic.

Use cases Ideal for stateless microservices and | Applicable to monolithic applications and
independently scalable cloud-native | databases where request splitting is
components. difficult.

Scalability Not strictly limited; constrained by | Limited by physical hardware boundaries

limit routing complexity and inter- | (max CPU cores, memory capacity, 1/O
instance coordination. limits).

Availability | Typically zero downtime; new | May require system reboot or

impact replicas spin up in parallel. redeployment, which can lead to temporary

service downtime.

Fault High resilience — failure of a single | Lower resilience — node failure can halt

tolerance instance doesn’t affect the system if | service unless a high-availability cluster is
proper load balancing is in place. configured.

Infrastructure | Requires orchestrators, load | Fewer external components needed, but

needs balancers (L4/L7), and service | demands high-performance hardware and

discovery tools for traffic routing
and coordination.

may require manual tuning.

Although horizontal and vertical scaling both address variance in load and load variance
through reactive resource provisioning, both approaches must base themselves on system state at the
time and threshold-based metrics. However, where traffic variability spikes occur suddenly and
unpredictably, reactive autoscaling may not be sufficient for guaranteeing service continuity.
Distributed systems overcome this limitation by relying on smart autoscaling based on machine
learning algorithms to anticipate traffic behavior and pre-empt accordingly. By predicting such traffic
behavior ahead of time, infrastructure can pre-prepare for demand bursts and minimize latency, avoid
resource overload, and maintain the risk of service degradation at low levels.

Rate limiting mechanisms

Controlling the rate of incoming requests is essential for maintaining the stability of distributed
systems under high or unpredictable load. Several classical rate limiting algorithms exist, each
exhibiting distinct characteristics in terms of resilience, control accuracy, and tolerance for short-term
traffic bursts (table 2).

Table 2

Comparison of rate limiting algorithms in distributed systems [4, 5]

Algorithm Mechanism Behavior under load Flexibility

Token Bucket | Tokens are generated at a | Allows short-term | Moderate — configurable
fixed rate; each token | bursts while | burst capacity and refill
permits one request. If | maintaining a defined | rate.
tokens are available, | average request rate.
requests are processed
immediately.

Leaky Bucket | Requests enter a fixed-size | Strictly enforces rate | Low — cannot
queue and are processed at | limit; drops excess | accommodate bursts.
a constant rate, regardless | requests during peak
of input speed. load.

Sliding Tracks the number of | Provides fine-grained | High — dynamic window

Window requests within a moving | rate enforcement and | movement reflects actual
time window (e.g., last 60 | eliminates artifacts | load trends.
seconds). from fixed intervals.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 24

The scientific publishing house «Professional Bulletin»

Algorithm Mechanism Behavior under load Flexibility
Adaptive rate | Dynamically adjusts rate | Reacts to system stress | Very high — can auto-
limit limits based on real-time | — reduces throughput | tune thresholds per

signals such as latency, | during overload, | traffic behavior.
CPU load, and error rate. restores limits when
system stabilizes.

The choice of a rate limiting algorithm should be dictated by system design, traffic profiles, and
fault tolerance requirements. In situations of steady load and stringent rate enforcement requirement,
algorithms like Leaky Bucket or Sliding Window are more appropriate. Token Bucket offers greater
flexibility to allow short-term bursts in traffic. Adaptive models are necessary in highly dynamic
situations where user behavior is less likely to be predictable. Their integration with telemetry and
observability systems is the foundation for intelligent traffic management policies that prevent
performance loss and optimize resilience of distributed systems when exposed to loads.

Adaptive load shedding strategies for resource-constrained distributed systems

Handling excess demand under resource saturation requires deliberate mechanisms for
selectively dropping traffic. Load shedding is one such controlled strategy, where a system
intentionally discards part of the incoming requests when predefined performance thresholds are
reached or exceeded. Unlike rate limiting, which regulates request flow during normal operation, load
shedding is activated in response to actual or imminent overload.

One common method is priority-based request filtering, which classifies incoming traffic by
criticality. Requests are given high, medium, or low priority according to business rules or service-
level agreements (SLA). For example, order processing may be essential in e-commerce, while
analytics or background synchronization can be backgrounded. Under overload, the system drops or
delays lower-priority requests in order to preserve resources for critical operations. This requires
priority routing and classification features at the API gateway or service mesh.

A second normal method is queue-based admission control, in which the new requests are
placed in a queue and executed based on the available resources. When the queue crosses a certain
threshold, the system can reject new requests or return backpressure to slow incoming traffic. This
method smoothes out short-term bursts and distributes processing over time but may also require
additional logic in the event of extended overload to prevent queue overruns and client timeouts.

Circuit breakers are crucial in service-to-service architecture by isolating directly failed or
overloaded components to prevent cascaded failure. The circuit breaker trips to an «openy state when
it reaches a threshold of errors, temporarily blocking calls to the failed service. Within this period,
fallback responses may be provided, or traffic sent to backups. Following the cooldown time, the
circuit enters a «half-open» condition to recover. In the case of a positive response, the connection is
reopened. This fault-tolerance mechanism allows failing systems to remain operational without total
failure.

The combination of these techniques — priority filtering, admission control, and circuit breakers
— provides a multi-layered load shedding technique. Distributed systems can adaptively handle
overload through this technique, maintaining stability and service continuity despite severe load.

Architectural realization of dynamic traffic management in cloud-native environments

Modern distributed systems are increasingly built using cloud-native approaches, where
pliability, scalability, and manageability are achieved through dynamic resource management
triggered by events and metrics. Cloud environments offer built-in mechanisms for implementing
load balancing, rate limiting, load shedding, and autoscaling mechanisms. Their architectural model
is based on microservices, containerization, orchestration, and service mesh technologies, creating a
favorable environment for deploying traffic management policies with a high degree of automation
and observability (table 3).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 25

The scientific publishing house «Professional Bulletin»

Table 3
Traffic management mechanisms in cloud-native architectures [6, 7]
Component Functionality Level of | Traffic management Example use case
/ tool control role
Kubernetes | Automatically Application | Horizontal autoscaling | Scaling stateless
HPA adjusts the number | layer (Pod | — reacts to load | services under
of pods based on | level) changes to maintain | fluctuating web
metrics (e.g., CPU, system responsiveness. | traffic.
custom).
Kubernetes | Dynamically tunes | Resource Vertical autoscaling — | Adjusting memory for
VPA resource scheduling | optimizes resource | JVM-based services
requests/limits layer allocation per pod. with variable heap
(CPU, memory) for usage.
running pods.
Istio /| Enforces rate | L7 (Service | Throttles incoming | Limiting login
Envoy Rate | limiting policies | mesh /| traffic to prevent | attempts or API call
Limit using local or | proxy overload and protect | rates per user.
distributed quotas. | level) downstream services.
Envoy Temporarily halts | L7 (within | Prevents cascading | Redirecting traffic
Circuit requests to failing | service failures by isolating | during database
Breaker services based on | mesh) unhealthy service | unavailability.
error thresholds. instances.
Kubernetes | Routes external | Edge Load balancing - | Balancing requests
Ingress + | traffic to services; | (L4/L7, distributes incoming | across replicated web
LB supports path- | depending | traffic across service | services.
based and host- | on setup) instances.
based routing.

Such integration of mechanisms in cloud-native systems ensures not only component-level
flexibility but also platform-level robustness across the system. Automated scaling, policy-driven
routing with centralized control, and enterprise-scale telemetry support provide high controllability
with low operational overheads. As a result, cloud platforms are not merely hosting infrastructure for
services, but engaged agents for ensuring fault tolerance and flexibility in distributed digital
infrastructure.

Observability-driven traffic control and failure mitigation in distributed systems

With highly volatile traffic and increasingly sophisticated microservice architecture, reactive
methods such as autoscaling or load shedding alone are not sufficient to ensure the reliability of digital
infrastructure in such environments. Credible and reliable functioning of distributed systems is only
feasible with end-to-end observability across all layers — ranging from low-level networking
interactions to high-level business metrics. With this paradigm, traffic control by observability is the
inevitable next step in adaptive system development whereby not only is there response to what has
already happened but also anticipation of potential overloads and the anticipation of failure prior to
its occurrence.

Modern distributed systems generate huge volumes of telemetry data that typically happen in
three flavors: metrics, tracing, and logging. Summarized numerical measures such as mean CPU
usage, request rate, latency, and error rate are metrics [8]. They are real-time feedback signals
employed for autoscaling, rate limiting, or load redistribution. Distributed tracing is required for
detailed analysis, providing end-to-end visibility into request flows between microservices, indicating
delays and bottlenecks at each step of processing. Logging provides the most detailed event-level
data — capturing exceptions, warnings, and custom messages — and underlies anomaly detection and
post-incident diagnostics.

Effective traffic management requires not only the collection of this telemetry, but its structured
aggregation, correlation, and real-time analysis. Tools such as Prometheus (metrics), Jaeger or
Ne 3/2025

Journal «Professional Bulletin. Information Technology and Security» 26

The scientific publishing house «Professional Bulletin»

OpenTelemetry (tracing), and Grafana Loki or ELK Stack (logs) enable a holistic view of
infrastructure state and behavior. In more advanced configurations, observability data feeds machine
learning pipelines for traffic prediction and anomaly detection.

By employing time-series data, traffic loads may be forecast using regression models, ARIMA,
or neural networks such as LSTM. These prediction techniques may detect early warnings for
upcoming overloads — for instance, high latency at sustained request rates or rising message queue
lengths. Services may pre-emptively scale out, adjust rate limits, initiate circuit breakers, or
redistribute traffic flows accordingly. This preventive measure has the effect of reducing occurrence
rate of incidents and recovery time, and improving overall service quality.

Thus, observability-enabled traffic management shifts failure management from a reactive to
proactive strategy. Through the incorporation of telemetry and predictive analytics in the architectural
foundation, systems are endowed with self-healing and self-regulating characteristics, making them
resilient against noisy workloads, software bugs, and external interference. It is essential in crafting
mature, cloud-native digital infrastructures that can provide sustainable operational excellence.

Conclusion

With today's high-loaded and constantly evolving digital environment, fault tolerance and
adaptability of distributed systems are impossible without the integrated employment of traffic
management technologies. Load balancing, adaptive rate limiting, load shedding, horizontal and
vertical scaling approaches enable systems to dynamically respond to fluctuating traffic volumes and
prevent service degradation. Their integration with cloud platforms through the employment of tools
like Kubernetes, Istio, Envoy, and KEDA ensures infrastructure level scaling and control over the
operation. At the same time, observability acts as the catalyst, transforming the traffic control from
reactive to proactive, self-adjusting behavior. All of these collectively ensure a fault-tolerant
architectural environment for continuous operation in uncertainty and with stability, predictability,
and quality of service persistence.

References

1. Ren Y., Wei M., Xin H., Yang T., Qi Y. Distributed network traffic scheduling via
trust-constrained policy learning mechanisms // Transactions on Computational and Scientific
Methods. 2025. Vol. 5. Ne 4.

2. Knyazeva A. Decentralized authentication methods for distributed networks //
Professional Bulletin: Information Technology and Security. 2024. Ne 3/2024. P. 12-15.
3. Tsyganok R. Methodology for Building Scalable Microservice Architectures on Go

for High-Load E-Commerce Platforms // Universal Library of Engineering Technology. 2025. Vol 1.
Ne 2.

4. Peri A., Tsenos M., Kalogeraki V. Vertical Scaling Can Save Time: Optimizing
Container Scheduling to Handle Sudden Bursts // Proceedings of the 19th ACM International
Conference on Distributed and Event-based Systems. 2025. P. 86-97.

5. Kalyanasundaram T., Panchalingam K., Jegatheesan T., Wijayasiri A., Perera S. Load
Balancer Filter-Based Approach To Enable Distributed API Rate Limiting // 2025 37th Conference
of Open Innovations Association (FRUCT). IEEE. 2025. P. 75-85.

6. Blazhkovskii A. Collecting metrics for continuous platform monitoring / Universum:
technical sciences: electronic scientific journal. 2025. Ne 3(132). P. 10-15.
7. Oyeniran O.C., Adewusi A.O., Adeleke A.G., Akwawa L.A., Azubuko C.F.

Microservices architecture in cloud-native applications: Design patterns and scalability //
International Journal of Advanced Research and Interdisciplinary Scientific Endeavours. 2024. Vol.
1. Ne 2. P. 92-106.

8. Zibitsker B., Lupersolsky A. Cost Optimization and Performance Control in the
Hybrid Multi-cloud Environment // Proceedings of the 16th ACM/SPEC International Conference on
Performance Engineering. 2025. P. 147-157.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 27

The scientific publishing house «Professional Bulletin»

UDC 004.438:004.42

INTEGRATION OF DEVOPS PRACTICES INTO DEVELOPMENT AND
OPERATIONS PROCESSES OF RUBY APPLICATIONS

Topalidi A.
specialist degree, Moscow state university of geodesy
and cartography (Moscow, Russia)

HUHTEI'PALIUSA DEVOPS-IIPAKTHUK B ITPOLHECCBI PASPABOTKH U
SKCILTYATAILIMU IPUJIOKEHUN HA RUBY

Tomaanau A.B.
cneyuanucm, Mockogckuil 20cy0apcmeennbiil yHusepcumen 2eo0e3uu
u kapmoepaguu (Mocksa, Poccust)

Abstract

This article examines the integration of DevOps practices into the development and operations
processes of applications built with the Ruby programming language. Particular attention is given to
the architectural and organizational characteristics of Ruby projects that influence the implementation
of automated delivery, testing, and maintenance workflows. It explores the use of modern DevOps
tools such as Docker, Kubernetes, and Terraform within the Ruby ecosystem, focusing on their role
in ensuring environment reproducibility, service orchestration, and infrastructure as code
management. The impact of these solutions on improving the resilience, scalability, and reliability of
the application lifecycle is investigated, along with practical automation cases and typical
implementation schemes.

Keywords: DevOps, Ruby, automation, Continuous Integration/ Continuous Deployment,
Infrastructure as Code, Docker, Kubernetes, Terraform, application operations.

AHHOTAIUSA

B nanHo# cTatbe paccMaTpuBaeTcst HHTErpamus DevOps-nipakTUK B IPOIEcChl pa3paboTKH U
SKCIUTyaTallul TPWIOKEHHUH, CO3MaHHBIX C HCIIOIB30BAaHMEM S3bIKAa HpOrpaMMupoBaHus Ruby.
Ocoboe BHHMaHHE YJIENSACTCS ApPXUTEKTYpPHBIM M OPTraHU3AIMOHHBIM OCOOCHHOCTAM Ruby-
IIPOEKTOB, BIUSIOIIMM Ha BHEAPEHUE aBTOMATU3UPOBAHHBIX IIPOLIECCOB JOCTABKH, TECTUPOBAHUS U
COIIPOBOKICHHUSI MPOTrpaMMHOro obecriedeHus. M3ydaercss nmpuMeHeHHe coBpeMeHHbIX DevOps-
MHCTpyMeHTOB, Takux kak Docker, Kubernetes u Terraform, B koHTekcTe Ruby-akocucTeMbl, ux
poiab B 0OECHEeYeHHH BOCIPOM3BOAUMOCTU CpEAbl, OPKECTPAlMM CEPBHCOB U YIPaBICHUH
UHPPACTPYKTYpOH Kak KoaoMm. Mccienyercss BIMSHHE OSTHX pELUICHUH Ha IOBBILICHHUE
OTKa30yCTOMYMBOCTH, MAaCHITAOMPYEMOCTH W HAJEKHOCTH >KU3HEHHOTO IMKJIA MPHIOKEHHUH, a
TaK)K€ PacCMaTPUBAIOTCS MPAKTUYECKUE KEHChl aBTOMATHU3ALlMU U THUIIOBBIE CXEMBbI TEXHUYECKOU
peanu3anum.

KaroueBbie cinoBa: DevOps, Ruby, aBromartmszamus, Continuous Integration/ Continuous
Deployment, ungpactpykrypa kak ko, Docker, Kubernetes, Terraform, npuxiiagHsie oneparyu.

Introduction

Over the past years, significant changes have taken place in the methods used for software
development and maintenance. With the demands for faster release cycles and greater scalability
running higher, the adoption of DevOps practices has become of prime importance. Such integration
allows for the automation of the life cycle of the software, the promotion of deployment stability, and
the simplification of infrastructure management. Especially for applications created with Ruby, and

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 28

The scientific publishing house «Professional Bulletin»

more so for the Ruby on Rails environment, the complementary use of DevOps tools becomes
especially relevant with the specific characteristics of the ecosystem and with the dominance of
monolithic architectures in place.

Today's DevOps software, such as Kubernetes, Terraform or Docker, have embedded features
to standardize the environment and create Continuous Integration/Continuous Deployment (CI/CD)
pipelines. In spite of that, the use of such software in Ruby-based projects requires proper attention
to aspects such as managing dependencies, structuring code, and running the applications on various
types of environments. Analyzing both successful implementations and common challenges
associated with these technologies can inform more effective strategies for automation and
infrastructure governance within the Ruby ecosystem. The goal of this research is to examine the
specific aspects of integrating DevOps practices and tools, such as Docker, Kubernetes, Terraform
into the development and operations processes of Ruby applications.

Main part. Peculiarities of integrating DevOps practices into the development and
operation of Ruby applications

The adoption of DevOps practices in Ruby-based projects requires careful analysis of multiple
architectural, organizational, and technological facets. Although Ruby has been one of the leading
programming languages used for the development of web applications, its ecosystem has centred
mostly around fast prototyping, monolithic structure, and in-situ configuration options. Such
characteristics pose unique obstacles to the adoption of advanced DevOps practices like continuous
integration, continuous delivery, infrastructure as code, and dynamic scaling.

Most Ruby applications are developed using the Model-View—Controller paradigm and follow
a monolithic structure [1]. While this enables development and testing activities locally, it restricts
flexibility in terms of automation of deployment tasks and the management of application components
independently. The adoption of DevOps practices helps tackle these constraints through creating
standardized pipelines and ensuring consistency of environments between development, testing, and
production phases.

One of the first steps in adopting DevOps integration for Ruby projects is the use of CI tools.
The Ruby language has strong support for testing and static code analysis, with frameworks like
RSpec and Minitest being widely used for unit and integration testing. RuboCop and Brakeman are
also being used for security auditing. Automation of checks at the CI phase ensures that defects are
caught early, before changes are merged into the main codebase, thus reducing the chances of defects
and improving the overall stability of the codebase. Typical CI pipelines in Ruby projects include
dependency installation via Bundler, execution of tests and linters, security checks, and artifact
generation, particularly the creation of Docker images in containerized environments [2].

A core principle of DevOps integration is the creation of a consistent runtime environment.
Unlike with many programming languages, Ruby applications are more sensitive to interpreter
version changes, dependency setups, and OS configurations. Therefore, environmental consistency
must be ensured by the use of configuration files (like .ruby-version, .ruby-gemset, and Gemfile.lock)
and automated provisioning tools (like Vagrant or containerized environments).

From an operational perspective, one of the persistent challenges in Ruby applications lies in
managing application state and dependencies, particularly in scenarios involving background jobs
and message queues. Many Ruby-based systems rely on asynchronous frameworks and libraries, such
as Sidekiq and Resque, that operate in separate processes, requiring careful coordination between
services and consistent lifecycle management. DevOps practices facilitate the automation of these
tasks through deployment scripts, state monitoring, and orchestration of background workers [3].

Equally important is the cultural shift in collaboration between developers and operations
engineers. The Ruby community has traditionally put more weight on code quality and design
modularity; infrastructural concerns have always been considered somewhat secondary to these. The
advent of DevOps patterns requires a redefinition of these boundaries, where the developer takes
more responsibility for the pipeline configuration, the infrastructure definition in code, and the
deployment into the environment.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 29

The scientific publishing house «Professional Bulletin»

The application of DevOps practices to Ruby applications is typically an evolutionary move
away from old, locally focused development patterns towards a more mature and flexible system. The
adoption of CI/CD pipelines, environment standardization, and the automation of testing and
deployment processes has become an essential component of modern Ruby projects.

The application of Docker, Kubernetes and Terraform to Ruby projects: automation,
infrastructure and continuous delivery

Modern application development practices force teams not just to code but also to handle the
whole application lifecycle, including the build and test stages, along with the deploy ability to scale
in the prod environments. On Ruby projects, particularly the ones under development and scaling,
Docker, Kubernetes, and Terraform have become the essential tools to fulfill the demands for the
above tasks. Their adoption enables environment reproducibility, centralized infrastructure
management, and reliable implementation of CD pipelines.

Docker addresses one of the central challenges of Ruby applications — environmental
dependency. Given Ruby’s sensitivity to interpreter versions, library compatibility, and build
toolchains, containerization offers a standardized configuration for application execution. Each
component, including the Ruby runtime, required gems, build systems, and supporting utilities, is
encapsulated within a Docker image. This methodology secures consistent behavior across
development, testing, and production environments. Docker images can be transferred to registries
and deployed across different environments without modification, significantly reducing errors
caused by configuration inconsistencies.

Kubernetes is employed to manage scalability, fault tolerance, and complex environment
configurations. Its use in Ruby-based projects enables flexible orchestration, load distribution, and
automatic recovery in the event of failures. Monolithic applications are readily deployable in a
Kubernetes cluster, where the different components like the Rails server, background job processor,
database, caching store, and dependencies are envisioned and managed as separate entities.
Kubernetes allows for careful management of resource allocation and provides automated scaling
based on changes in workload intensity.

One of Kubernetes' most major strengths is the capacity to supply with uniform deployment to
multiple environments such as testing, quality assurance, and production environments. The use of
configuration files and templating software like Helm charts allows the recreation of infrastructure in
a rigid manner on a diverse range of environments. Kubernetes further helps in the orchestration and
maintenance of background tasks and auxiliary services like Sidekiq queues, WebSocket servers, and
scheduled tasks that have traditionally presented some operating difficulties in Ruby-based
infrastructures.

Docker and Kubernetes solve problems with the service orchestration and runtime environment.
Nevertheless, Terraform has functionality to manage the underlying infrastructure. It is not rare to
find the use of Terraform in Ruby projects to create the important components such as servers,
databases, storage devices, load balancers, network devices, and others that form the base
components. This process follows the infrastructure-as-code principles and guarantee reproducibility
and ease of tracking changes.

Terraform is especially useful in situations where fast scalability or the creation of fresh
environments are needed. Instead of handling cloud resources manually, groups are capable of
creating reusable templates that only take slight adjustments for provisioning. This process greatly
reduces the prospect of human error while speeding up the deployment of fresh features. Moreover,
automated infrastructure management enables straightforward recovery from failures, as the entire
architecture, codified and versioned, can be restored to its original state when necessary. To illustrate
how these tools operate in conjunction throughout the application lifecycle, the figure 1 outlines a
typical DevOps pipeline for a Ruby-based project.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 30

The scientific publishing house «Professional Bulletin»

Cl pipeline is Cl workflow:

Developer Code is pushed to triggered Dependencies, tests, linting &

writes cotgie 9“ reposifcory (GitHub Actions security (Bundler, RSpec,
(Ruby / Rails) (GitHub / GitLab) / GitLab Rubocop, Brakeman) Build Docker
e ra "
O O N b image with
Deploy applicationto O O O application
Kupernetes cluste.r: Apply infrastructure Push Docker image to
Pull image fr?m registry changes via container registry
Deploy via Helm Terraform (DockerHub / GitHub
Kustomize Packages)
Define services: Rails
app, Sidekiq, Redis, DB Application
N 0O is live in
Kubernetes handles: O e production
Load balancing Monitoring & Logging:
Autoscaling - Prometheus / Grafana for D
Health checks & self- metrics
healing - Loki / ELK for logs

Figure 1. DevOps workflow for Ruby-based applications
Given the distinct roles and technical capabilities of listed tools within the DevOps ecosystem,
it is important to consider their respective strengths and limitations when applied to Ruby-based
projects (table 1).

Table 1
Comparison of DevOps tools [4, 5]
Tool Advantages Disadvantages

Docker Environment isolation, simplified | Network and permission complexities,
local development, consistent | requires optimized Dockerfile
deployment across environments. configuration.

Kubernetes Automatic scaling and self-healing, | Steep learning curve, complex initial
high availability, centralized | setup.
orchestration.

Terraform Infrastructure as code, multi-cloud | Risk of destructive changes, depends on
support, reproducibility and version | provider stability and API.
control.

The integration of Docker, Kubernetes, and Terraform into a unified DevOps pipeline enables
Ruby projects to transcend traditional deployment models and embrace full automation and
operational control. Such a pipeline improves process predictability, reduces manual intervention,
accelerates release cycles, and facilitates frequent code changes without compromising system
stability. These benefits are particularly evident in Agile-oriented teams, where rapid value delivery
and responsiveness to changing requirements are critical [6].

Shopify is one of the world’s largest e-commerce platforms that makes extensive use of Ruby
on Rails and has successfully implemented a large-scale DevOps infrastructure based on Kubernetes.
The engineering team developed an internal platform for orchestrating microservices and
development environments, enabling the creation of automated deployment workflows and
management of over two thousand services. Through deep integration of CI/CD pipelines and a well-
defined infrastructure-as-code strategy, Shopify has achieved both high delivery velocity and stable
environment provisioning while maintaining the core of its business logic in Ruby [7].

GitLab is a widely used DevOps lifecycle management platform and primarily written in Ruby
and serves as a prominent example of deep DevOps integration within a Ruby-based project [8]. The
internal architecture of GitLab supports containerization through Docker, automated CI/CD pipelines,
and a scalable deployment layer on Kubernetes. In addition, GitLab leverages Terraform for cloud
resource provisioning, allowing the team to deploy both testing and production environments
programmatically.

Discourse is a popular open-source platform for online forums and also built with Ruby on
Rails and was designed from the outset with deployment automation and operational efficiency in
mind. The development team maintains an official Docker-based stack that enables one-command

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 31

The scientific publishing house «Professional Bulletin»

deployment across a wide range of server infrastructures [9]. Automation extends to environment
configuration, dependency updates, backups, and scalability operations.

Consequently, the adoption of modern DevOps tools allows Ruby applications to overcome
limitations associated with legacy development and deployment practices, positioning them to meet
the demands of contemporary high-load environments. Effectively implemented tools boost
technological resilience and promote organizational process maturity, laying the foundation for
sustained growth and long-term project changes.

Conclusion

The adoption of DevOps practices in Ruby application development and management marks
the significant milestone towards achieving stable and scale-incline software delivery. Traditionally,
the Ruby world has favored localized, monolithic architectures, but rising expectations for reliability
and the need for rapid deployment call for the adoption of automation tools and efficient infrastructure
management. The adoption of CI/CD principles, along with the unified approach for runtime
environments, allows Ruby projects to get aligned with the latest software engineering practices.

The combination of Docker, Kubernetes, and Terraform increases organizational maturity and
technical flexibility. Containerization, with collaborative working, promotes better reproducibility.
Orchestration provides exact control and scale, and infrastructure as code makes the process more
dependable and visible for change management steps. Together, all these elements constitute one
complete technological stack where the development and operational procedures are highly coupled
and bonded with the power of automation. While considering upcoming innovations, this integration
has been considered as the vital base for efficient Ruby application development, examining the
mounting complexity and higher performance expectations.

References

1. Mili¢ M., Makaji¢-Nikoli¢ D. Development of a quality-based model for software
architecture optimization: a case study of monolith and microservice architectures // Symmetry. 2022.
Vol. 14 (9). Ne 1824.

2. Dudak A., Israfilov A. Application of blockchain in IT infrastructure management:
new opportunities for security assurance // German International Journal of Modern Science. 2024.
Ne 92. P. 103-107.

3. Chatterjee P.S., Mittal H.K. Enhancing Operational Efficiency through the Integration
of CI/CD and DevOps in Software Deployment // In2024 Sixth International Conference on
Computational Intelligence and Communication Technologies (CCICT). 2024. P. 173-182.

4. Ponomarev E. Optimizing android application performance: modern methods and
practices // Sciences of Europe. 2024. Ne 149. P. 62-64.

5. Chen C.C., Hung M.H., Lai K.C., Lin Y.C. Docker and Kubernetes // Industry 4.1:
Intelligent Manufacturing with Zero Defects. 2021. P. 169-213.

6. Blazhkovskii A. Formation of high-performance teams in mobile development // Cold
Science. 2025. Ne 13. P. 7-17.

7. Shopify-Made Patterns in Our Rails Apps / Shopify.Engineering // URL:

https://shopify.engineering/shopify-made-patterns-in-our-rails-apps (date of application:
17.08.2025).

8. Infrastructure as Code with OpenTofu and GitLab / GitLab // URL:
https://docs.gitlab.com/user/infrastructure/iac/ (date of application: 18.08.2025).
9. Discourse_docker / GitHub // URL: https://github.com/discourse/discourse docker

(date of application: 20.08.2025).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 32

https://shopify.engineering/shopify-made-patterns-in-our-rails-apps
https://github.com/discourse/discourse_docker

The scientific publishing house «Professional Bulletin»

UDC 004.4

ARCHITECTURAL DESIGN PATTERNS FOR HIGH-LOAD SYSTEMS:
PRINCIPLES, TOOLS, AND SCALABILITY CONSTRAINTS

Berezhnoy A.
bachelor's degree, Peter the Great St. Petersburg
polytechnic university (St. Petersburg, Russia)

APXUTEKTYPHBIE IATTEPHBI IPOEKTUPOBAHUSA
BBICOKOHAI'PY>KEHHbBIX CUCTEM: IPUHLUIIBI, UTHCTPYMEHTDI
N OT'PAHNYEHUA MACHITABUPOBAHUA

Bepe:xnoii A.A.
oakanasp, Cankm-Ilemepbypackuii nonumexnuieckuil yHugepcumem
Ilempa Benuxoeo (Canxkm-Ilemepoype, Poccus)

Abstract

The article takes into account architectural patterns used when building high-load distributed
systems, such as CQRS, Event Sourcing, and Circuit Breaker. It analyzes their rules of operation,
typical use cases, and shortcomings in terms of scalability, consistency, and fault tolerance. The paper
presents a functional classification of these patterns, highlighting their engineering advantages and
operational risks. Real-world implementation examples from major technology companies are
provided, and criteria for selecting architectural solutions are formulated based on workload
characteristics and infrastructure maturity. The article concludes by emphasizing the rationale for
combining patterns within a unified architectural strategy, taking into account the specifics of
business logic and system availability requirements.

Keywords: architectural patterns, high-load systems, CQRS, Event Sourcing, Circuit Breaker,
scalability, fault tolerance.

AHHOTAIUSA

B craThe paccMaTpuBaroTCa apXUTEKTYPHbIE ATTEPHBI, IPUMEHSEMbIE ITPHU MPOESKTUPOBAHUH
BBICOKOHArpy>KEHHBIX pacnpezneneHHbix cucrem, Takue kak CQRS, Event Sourcing u Circuit
Breaker. AHamm3upyroTcs NpUHIMIIBI MX pabOThl, THUIOBBIE CLEHAPUU HCIOIb30BAHUS U
OTpaHUYEHUS, CBS3aHHBIE C MaclITaOUPOBaHMEM, COIJIACOBAHHOCTBIO JAHHBIX U
OTKa30yCTOMYMBOCTHIO. Onucanbl (PyHKIIMOHAIBHBIE KIACCU(PHUKAIIMHA TAaTTEPHOB, UX MH)KEHEPHBIC
NPEeUMYIIECTBa U SKCIUTyaTallMOHHbIE PUCKHU. [IpuBOIATCS TpuUMEpbl MPUMEHEHUS B KPYIHBIX
KOMITAaHUAX U (HOPMYTHUPYIOTCS KPUTEPHUH BHIOOpA apXUTEKTYPHBIX PEIICHUH B 3aBUCHUMOCTU OT
XapakTepa Harpy3kKu W 3peliocTh HUHQPacCTpyKTypbl. JlemaeTcst BBIBOX O 1LEIECO00pa3HOCTH
KOMOWHHUPOBaHMS MATTEPHOB B PAMKaX €IMHOW apXUTEKTYPHOH CTpATETHH C YYETOM CHeuu(UKU
OU3HEC-JIOTUKU U TPeOOBAHUHN K TOCTYIHOCTH.

KuroueBble cj10Ba: apXUTEKTYpHBIE IATTEPHBI, BBICOKOHArpyxeHHble cucteMbl, CQRS, Event
Sourcing, Circuit Breaker, macirabupoBanue, 0TKa30yCTOWYUBOCTb.

Introduction

Modern high-load information systems form an integral part of digital industry infrastructure
in e-commerce, telecommunications, fintech, and logistics. These systems process millions of
requests, ensure continuous availability of the service, and should prove to be resilient to all types of
failure. In situations with sharply growing user activity and increasing complexity of business logic,

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 33

The scientific publishing house «Professional Bulletin»

the architecture of a system is the decisive aspect in reliability and scalability. As such, most emphasis
is on architectural design patterns that help deal with complexity, enhance fault tolerance, and make
distributed systems more flexible.

The goal of this article is to provide an organized presentation of architectural patterns used
when constructing high-load systems and their principles, supporting tools, and scalability
limitations.

Main part. Fundamentals of high-load system design

High-load systems are distributed computing systems that are intended to process huge volumes
of data and massive numbers of simultaneous requests with high reliability and minimal latency. They
are applied in high-traffic setups with rigorous availability requirements, such as e-commerce, real-
time money transactions, telecommunications, web streaming, and high-frequency data
processing [1]. Their architecture must exhibit uniform performance at the peak point of load,
flexibility of resources, and continuous scalability without degrading the quality of service.

The main technical characteristics of high-load systems are horizontal scalability support,
partial failure tolerance, low latency, and high throughput. The current trending architectural
practices involve stateless services, service decomposition using microservices, data replication,
message queueing support (Apache Kafka), sophisticated load balancing techniques, distributed
caching (Redis, Memcached), and data partitioning (sharding). Data consistency in distributed
systems typically relies on eventual consistency models and CAP theorem trade-offs that call for
transactional design and fault tolerance mechanisms.

Scalability is primarily achieved horizontally by adding new nodes and sharing traffic evenly
across them. It includes close coupling of request routing, data locality, and minimizing inter-node
communication. Fault tolerance is obtained through the duplication of essential elements, application
of failure management patterns (Circuit Breakers, retries), real-time system monitoring, and
automatic recovery assistance. High-load systems thus necessitate a unified solution that considers
architectural principles, engineering methods, and automation tools.

Overview of architectural patterns

Architectural design patterns are reusable solutions to common problems that prove to be
recurrent in software system development. Individual algorithms or libraries, by contrast, formalize
successful architectural methods of structuring components, intercomponent communication,
processing data, and failure recovery [2]. Though these templates do not provide for hard-coded
implementations, they supply a strategic framework within which developers can bring system
architecture into line with specific requirements.

There are numerous types of architectural patterns, but the most insightful within the high-load
system setting is the functional orientation classification, i.e., the specific issues to be solved by the
patterns (table 1).

Table 1
Functional classification of architectural patterns in high-load systems
Functional category Purpose of patterns Example use cases
State management Efficient storage, recovery, and | Cache consistency, change history
replication of data tracking
Fault isolation and | Protection against cascading | Timeout enforcement, automatic
resilience failures, process recovery fallback mechanisms

Load balancing and | Optimization of

traffic distribution

incoming | Load balancing across microservices,

request routing

geo-distributed routing

Asynchronous
processing and event
queues

Offloading tasks from the main
execution flow

Logging, delayed processing, bulk event
publishing

Scalability Horizontal scaling of system | Service decomposition, data sharding
components
Responsibility Improved modularity, | Separation of read/write concerns,
segregation testability, and scalability modular system architecture
Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 34

The scientific publishing house «Professional Bulletin»

Functional category
Consistency Coordination of consistent state | Eventual ~ consistency, distributed
management in distributed systems transaction reconciliation
Thus, the architectural pattern functional categorization is a disciplined approach to creating a
system based on the type of problems they are designed to solve and where they operate. It is highly
applicable in high-load systems, where each decision concerning architecture will have to meet strong
requirements for performance, resilience, and scalability. The above-mentioned table serves as a
reference when selecting the appropriate patterns to assist in creating well-proportioned and flexible
architectures.
CQRS pattern as a mechanism for scalable and isolated management of read and write
operations in high-load systems
The CQRS pattern (Command Query Responsibility Segregation) is an architectural approach
in which state-modifying operations (commands) and read operations (queries) are handled by
separate components (fig. 1).

Purpose of patterns Example use cases

Command -
(Writes)
ul Database
Query
(Read)

Figure 1. CQRS pattern

Such a design is based on separation of concerns: read and write operations require different
data models, pose different performance and scaling requirements, and their combined
implementation typically produces architectural baggage and violation of the Single Responsibility
Principle (SRP).

The use of the CQRS pattern in high-load system design is appropriate where there are
asymmetric loads against read and write operations, business logic complexity, and independent
scalability needs for system components. Its implementation should, however, be done with proper
consideration of its engineering benefit and inherent trade-offs (table 2).

Table 2
Technical advantages and limitations of the CQRS pattern [3, 4]
Advantages Disadvantages Applicability notes
Independent scaling of read | Increased architectural | Suitable for systems with read-

and write models using
separate nodes, databases, or
services

complexity, more services
and sync logic required

heavy loads (e.g., 80-90% reads)

Optimized query performance
via precomputed projections or
denormalized views

Eventual consistency issues
between write and read
models

Effective in analytical or
dashboard-heavy applications

Isolated business logic in

Harder to trace failures due

Works well with strict domain

multiple data views for APIs or
Ul, without affecting write
logic

command handlers improves | to asynchronous event | modeling (DDD); requires
maintainability and rule | flows advanced monitoring

enforcement

Flexible read models allow | Migration from CRUD | Best for greenfield systems or new

systems is complex and
may require data model
redesign

microservices

Read availability under partial
failure, since read model can
remain operational if write path
fails

Higher DevOps overhead:
separate deployments,
queues, and fault tolerance
setups

Critical for 24/7 systems requiring
high availability

Ne 3/2025

Journal «Professional Bulletin. Information Technology and Security» 35

The scientific publishing house «Professional Bulletiny

Advantages Disadvantages Applicability notes

Natural fit with Event | Steeper learning curve for | Suitable for experienced teams in
Sourcing: easy to replay events | teams unfamiliar ~ with | complex domains
and rebuild projections distributed and event-
driven systems

Thus, the CQRS pattern is an effective method of improving scalability, maintainability, and
fault tolerance of high-loaded systems, particularly where read operations significantly surpass write
operations and business logic requires strict processing isolation. However, its application introduces
architectural and operational complexity and, consequently, this method is relevant primarily when
the technical team is mature enough and there is an explicit need for the segregation of read and write
concerns.

Event Sourcing pattern: state management through event streams in distributed systems

Event Sourcing pattern leverages the concept of keeping all changes to a system's state as an
immutable stream of events. The system doesn't keep the entity's current state within the database but
keeps every event that has shaped that state, in the order in which they occurred. Thus, the state at
any point in time can be recreated through a re-run of the sequence of events from beginning. Such
an approach makes tracing historical development precise, while simultaneously enhancing flexibility
in modifying business logic, auditing, and system recovery (fig. 2).

Event Store

(Crrrrrro)

publish query streams
event event-store events

Service B
]

Figure 2. Event Sourcing pattern

It is particularly applicable in high-load systems where precise change tracking, operation
rollbacks, full auditability, and process reproducibility are required. Event Sourcing is used in systems
with complex business logic — such as financial systems, CRM systems, and logistics systems — as
well as in architectures where data consistency between multiple services is needed. It is typically
combined with CQRS: commands trigger event creation, which is then processed to build projections
in read models. Table 3 lists the advantages and disadvantages of using Event Sourcing in high-load
architectures.

Table 3
Advantages and limitations of the Event Sourcing pattern in high-load architectures [5, 6]
Advantages Disadvantages Applicability notes

Complete change history: | Storage complexity: requires | Relevant for domains with
every event is stored, ensuring | designing an event store and | strict regulatory or audit
full traceability and | supporting event versioning. requirements (e.g., finance,
auditability. insurance).

High fault tolerance: state can | Consistency and ordering | Requires idempotency
be restored by replaying past | issues in distributed systems. strategies and control of event
events. order.

Ability to rollback or simulate | Increased development | Suitable for experienced teams
changes (event replay, time- | complexity: event schema | working with event-driven
travel debugging). migrations and aggregate | architectures.

management are required.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 36

The scientific publishing house «Professional Bulletin»

Advantages

Disadvantages

Applicability notes

Easy integration with CQRS:
events directly feed projections
in read models.

Large data volume due to the
accumulation of events over
time.

Requires snapshotting or
archival strategies to manage
storage.

Flexible business logic: a | Demands robust event delivery | Requires a reliable event
single event can be processed | and consistency infrastructure | backbone such as Kafka,
by multiple subscribers. (brokers, retry logic). NATS, or Pulsar.
Improved scalability and | Debugging and testing | Requires visualization tools
asynchronous processing. complexity: state is built | and event stream tracing
dynamically, not centrally | support.
stored.

Hence, Event Sourcing is a good architectural style that provides great control over state
management, complete change history, and flexible business logic evolution. It is particularly
necessary in systems where strong audit requirements, reproducibility, and data consistency among
microservices are required. However, adopting this pattern also requires specialized event-driven
infrastructure, careful event modeling, and readiness to deal with the added complexity of debugging,
scaling, and maintaining the system. The use of Event Sourcing should be deliberate and linked to
actual system requirements rather than architectural trends.

Circuit Breaker pattern: failure management in distributed high-load systems

The Circuit Breaker pattern is employed to protect systems from cascaded failures and
performance deterioration when auxiliary services are momentarily unavailable or loaded,
respectively, for some elements. Its spirit is to monitor the status of the communications between
services and programmatic call termination to flaky dependencies following a failure quota being
reached. This prevents the failed component from being overloaded, reduces response time latency,
and maintains the integrity of the remaining system (fig. 3).

Fail Fast

.......................

Success

Closed l

.........

Half open

Too many Timeout

failures

..

Failure
Under Treshold

Success

Figure 3. Circuit Breaker pattern

In high-load system architecture, the Circuit Breaker is a crucial component within fault-
tolerance mechanisms, implemented on the basis of the fail-fast principle. It works best in
microservice and distributed systems, where numerous services communicate across the network, and
delays or failures in one component can lead to a domino effect. The pattern is implemented as a mid-
layer between calling and called components, transitioning between the following states
automatically: closed (normal operation), open (calls are disallowed), and half-open (availability is
tested). As in the case of the patterns discussed above, Circuit Breaker has its own characteristics and
trade-offs (table 4).

Table 4
Advantages and limitations of the Circuit Breaker pattern [7, 8]
Advantages Disadvantages Applicability notes
Reduces load on failing | Requires careful configuration | Effective when interacting with
components by cutting off calls | of error thresholds, timeouts, | unstable external APIs or
after reaching the failure | and recovery intervals. services.
threshold.
Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 37

The scientific publishing house «Professional Bulletin»

Advantages

Disadvantages

Applicability notes

Lowers client-side latency
during failures through fail-fast

Risk of premature interruption
due to temporary fluctuations

Needs metrics analysis and
proper sensitivity tuning.

Circuit Breaker states.

responses. in service performance.
Increases overall system | Requires continuous | Suitable for microservice
stability by isolating failures. | monitoring and logging of | architectures with many

service dependencies.

Supports automatic recovery
via the half-open state.

Complex to test under failure
and recovery scenarios at scale.

Integration with observability
stack (e.g., Prometheus,
Grafana, Zipkin) is essential.

Improves user experience by
enabling controlled error
handling and fallbacks.

May require additional
infrastructure or libraries (e.g.,
Hystrix, Resilience4;).

Can be embedded in API
gateways, service meshes, or
middleware layers.

Easy to integrate into call
chains using middleware or

Increases tracing complexity in
distributed environments.

Requires centralized logging
and correlation of request

interceptors. identifiers.

The Circuit Breaker pattern is thus a fundamental building block for the design of resilient
distributed systems by isolating failing components and preventing the propagation of errors. Its
effectiveness, however, is directly tied to both the correctness of its setup as well as the quality of
system observability. Properly implemented, not only does it improve fault tolerance, but it also deals
with user experience and system responsiveness during partial outages. However, to be successfully
adopted, it needs to integrate with monitoring tools and a mature operational environment that can
support automated recovery and graceful degradation.

Applicability analysis in real-world systems

Architectural patterns for use in designing high-load distributed systems truly find their worth
only if appropriately tailored to a specific deployment context. Selecting an appropriate strategy needs
to depend on several factors like the type and magnitude of load for a system, the level of acceptable
data consistency, response time requirements, and scalability of individual components. These
patterns are applicable across various domains — including finance, telecommunications, e-
commerce, and logistics — where reliability and throughput are critical [9]. No less important are the
maturity of the team, the presence of a stable DevOps foundation, and readiness to handle
sophisticated event-driven logic under production. Early adoption of a pattern, even one that is
theoretically correct, on unjustified premises, may introduce with it increased operational complexity,
reduced system reliability, and debug and maintenance challenges.

In reality, CQRS (Command Query Responsibility Segregation), Event Sourcing, and Circuit
Breaker patterns are used in the industry on a wide scale to implement robust and scalable distributed
systems. For instance, CQRS is used by Amazon in a number of high-volume, consumer-facing
systems such as the Amazon Shopping Cart and Order Management System, where read operations
(e.g., availability of product, price, history of order) far exceed writes. By separating the read and
write responsibility, Amazon is able to have distinct read-optimized and write-optimized data models
—1.e., DynamoDB for write and ElasticSearch for query. This kind of architecture enables horizontal
scaling of read replicas, reduces customer query latency during traffic surges (e.g., Black Friday), and
enables event-driven propagation of updates to downstream services like billing or inventory. This
design also enhances fault isolation and allows Amazon to modify read and write subsystems
separately, reducing deployment risk and operational coupling.

Similarly, Netflix employs the Circuit Breaker pattern — especially via Resilience4j and the
deprecated Hystrix — as an essential element of its microservice framework. For example, in the
Netflix API Gateway layer, Circuit Breakers oversee outgoing requests to services downstream like
the Recommendation Engine or User Profile Service. If latency surpasses set limits or error rates
surge (for instance, from regional outages or backend issues), the breaker shifts to an «open» state,
immediately failing calls to prevent overloading the target service. This fail-fast approach not only

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 38

The scientific publishing house «Professional Bulletin»

shortens recovery time by decreasing load but also stops thread pools and connection limits in
upstream systems from being exhausted.

Real-world experience with the subject matter proves that the best outcomes are achieved by
carefully combining these patterns, supported by correct configuration and ongoing monitoring.
CQRS, Event Sourcing, and Circuit Breaker complement each other by providing flexibility,
reliability, and scalability. Their effective use, however, requires mature engineering culture, i.e.,
correct monitoring, distributed tracing, automated tests, and a correctly managed approach to
evolving business logic over time.

Conclusion

Given the exponential growth of online services and the resulting increase in system load, the
adoption of architectural patterns has become a fundamental requirement for ensuring system
scalability, fault tolerance, and maintainability. CQRS, Event Sourcing, and the Circuit Breaker are
patterns that perform best when properly applied in high-load system architecture, particularly in
conjunction with event-based models and high-quality monitoring tools. Their use allows systems to
evolve adaptively to new needs while reducing the effect of failures and uneven traffic. But effective
use of these patterns does need mature engineering practices, well-thought-out architectural design,
and detailed consideration of operational constraints.

References

1. Bolgov S. Development of high-load backend systems for banking products: problems
and solutions // Proceedings of the LIII International Multidisciplinary Conference «Innovations and
Tendencies of State-of-Art Science». Mijnbestseller Nederland, Rotterdam, Nederland. 2025. P. 44-
51.

2. Perera C. Optimizing Performance in Parallel and Distributed Computing Systems for
Large-Scale Applications // Journal of Advanced Computing Systems. 2024.Vol. 4. Ne 9. P. 35-44.
3. Cherif AN., Youssfi M., En-naimani Z., Tadlaoui A., Soulami M., Bouattane O.

CQRS and Blockchain with Zero-Knowledge Proofs for Secure Multi-Agent Decision-Making //
International Journal of Advanced Computer Science & Applications. 2024. Vol. 15. Ne 11.

4, Youssfi M., Ezzrhari F.E., Hajoui Y., Bouattane O., Kaburlasos V. Multi-Micro-Agent
System middleware model based on event sourcing and CQRS patterns // Smart Trajectories. CRC
Press. 2022. P. 25-46.

5. Dhanaraj A. Building Resilient Systems: Error Handling, Retry Mechanisms, and
Predictive Analytics in Event-Driven Architecture // Journal of Computer Science and Technology
Studies. 2025. Vol. 7. Ne 7. P. 317-324.

6. Smirnov A. Efficient microservices scaling: Kubernetes, autoscaling, and load
balancing // International Journal of Advances in Computer Science and Technology. 2025. Vol.
14(6). P. 22-24.

7. Punithavathy E., Priya N. Auto retry circuit breaker for enhanced performance in
microservice applications // International Journal of Electrical & Computer Engineering (2088-8708).
2024. Vol. 14. Ne 2.

8. Turchenko A. Optimization of Microservices Architecture Performance in High-Load
Systems // The American Journal of Engineering and Technology. 2025. Vol. 7. Ne 05. P. 123-132.
9. Kovalenko A. Architectural and algorithmic methods for enhancing the resilience of

high-load backend services in the financial sector / Norwegian Journal of development of the
International Science. 2025. Ne 158. P. 87-91.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 39

The scientific publishing house «Professional Bulletin»

UDC 004.94: 336.64

DIGITAL VISUALIZATION OF INVESTMENT ACTIVITY IN THE EOS
(VAULTA) BLOCKCHAIN ECOSYSTEM

Ulyanov V.
bachelor's degree, Azerbaijan state oil and industry university
(Baku, Azerbaijan)

LU®POBASI BU3YAJIU3ALMSA UHBECTULIMOHHON AKTUBHOCTH B
BJIOKYENH-95KOCUCTEME EOS (VAULTA)

Yassinos B.B.
bakanasp, A3epoaiodcanckull 20Cy0apcmeeHHblll yHugepcumen
Hegpmu u npomviuiniennocmu (baxy, Aszepbaiioican)

Abstract

This article examines the digital visualization of investment activity in the EOS (Vaulta)
blockchain ecosystem. The architecture of the platform based on the Delegated Proof of Stake
mechanism is analyzed, as well as the specifics of the investment environment shaped by the resource
model and the structure of incentives. Directions of financial activity and their impact on the behavior
of ecosystem participants are studied. Special attention is paid to the structure of blockchain data and
its analytical potential, as well as to the role of interface and visual-analytical tools in the
interpretation of investment processes. User experience and interface are analyzed, ensuring cognitive
accessibility of information, reduction of user workload, and increased trust in decentralized services.

Keywords: digital visualization, EOS (Vaulta), investment activity, blockchain data, interface
tools, tokenomics.

AHHOTAIUSA

B nanHoii craThe paccMaTpuBaeTcs HH(poBasi BU3yalu3ais HHBECTUIIMOHHON aKTUBHOCTH B
onokueitn-skocucreme EOS (Vaulta). Ananusupyercss apxutekTypa miar(opMbl, OCHOBaHHasl Ha
mexaam3me Delegated Proof of Stake, a Taxxke cienndrka HHBECTHIIMOHHON CpeIbl, POPMUPYEMO
MOJ BJIMSHHUEM pECypCHOM MOJEIU U CTPYKTYpbl CTHUMYyJOB. Mccienyrorcs HampaBiIeHUs
(MHAHCOBOW aKTUBHOCTH, a TAK)KE UX BIMSHUE HA TMOBEJCHHUE YYAaCTHHUKOB 3KocHucTeMbl. Ocoboe
BHUMAaHHE YJEISIETCS CTPYKType OJOKYEHH-TaHHBIX M MX aHAIUTHUYECKOMY HMOTEHIMATY, a TaKXke
ponau MHTEPPEHCHBIX ¥ BHU3YAJIbHO-aHAIUTHUECKUX HMHCTPYMEHTOB B MHTEpIPETAIHH
MHBECTULMOHHBIX TPOLIECCOB. AHATM3UPYIOTCS IOJB30BATEIbCKUI OMBIT M UHTEpeEiic,
o0ecreynBaroye KOTHUTUBHYIO JOCTYITHOCTh HH(OpMAIIUK, CHUKEHUE HAarpy3KH Ha MOJIb30BaTeNs
U TIOBBIIIICHHUE JOBEPHUS K ACLEHTPAIN30BAHHBIM CEPBUCAM.

KuaroueBbie ciaoBa: mudposas Buzyanusanus, EOS (Vaulta), uHBeCTUIIMOHHAS aKTUBHOCTb,
ONOKYeHH-TaHHbIe, HHTeP(EHCHBIC HHCTPYMEHTHI, TOKCHOMUKA.

Introduction

The development of blockchain technologies has led to the formation of new forms of
investment behavior, where transparency, accessibility, and data structuring play an important role.
In the context of high complexity of network processes, one of the priority tasks is the creation of
interface and analytical tools that allow not only tracking transactions and economic metrics but also
interpreting them in the context of user behavior.

The EOS (renamed on May 14, 2025 to Vaulta in connection with the transition to a new
strategy focused on creating Web3 banking) ecosystem is a representative model for analyzing such

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 40

The scientific publishing house «Professional Bulletiny

processes due to the combination of the Delegated Proof of Stake (DPoS) mechanism and a developed
application network. Visual and interface solutions acquire particular significance in it, providing
both technical detailing of transactional flows and cognitive accessibility of analytics for different
categories of participants. The purpose of the study is to analyze the role of interface and visual-
analytical tools in the interpretation of investment activity in the EOS (Vaulta) ecosystem.

Main part. Investment environment of the EOS (Vaulta) ecosystem

The EOS (Vaulta) ecosystem occupies a special position among blockchain platforms focused
on high-performance decentralized applications (dApps). It provides a scalable, almost
instantaneously responsive, and economically efficient infrastructure. Its investment environment is
shaped by architectural decisions, the governance mechanism, the structure of incentives, and the
behavior of various participants.

At the core of EOS (Vaulta) lies the DPoS consensus mechanism. Unlike the traditional Proof
of Work (PoW), where the right to create a block is obtained through computational costs, or the
conventional Proof of Stake (PoS), which assumes a random selection of validators, it operates
through delegated voting, in which token holders elect 21 block producers. These nodes act on behalf
of the community, ensuring decentralization of governance while maintaining high throughput (fig.

).

R=bxP=6x21=126

t = time = 0.5 sec
1 block = 0.5 sec
6 blocks = 3 sec

1 round = 6.3 min

21 Block

Producers R = Round
b = Blocks
P = Producers

Figure 1. Architecture scheme of the DPoS mechanism in the EOS (Vaulta) network

The abandonment of traditional transaction fees fundamentally changes the nature of user
experience (UX) and investment models. In this ecosystem, a resource model is applied, meaning that
users reserve CPU, NET, and RAM required for executing transactions. This eliminates direct fees
for operations but introduces variable costs associated with the fluctuating value of resources, creating
a secondary market for computing power and storage. In practice, this directly affects investor
strategies. Projects with high transaction frequency or significant data volumes are forced to take into
account the dynamics of resource prices as a factor of operational risk and investment attractiveness.

The combination of delegated consensus, the resource model, and the absence of fees creates a
unique economic environment with specific incentives. Under these conditions, the structure of
interactions among ecosystem participants emerges (fig. 2).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 41

The scientific publishing house «Professional Bulletin»

interaction with the network

block

< > | developers
roducers
financing using
and the
management services

retail
investors

speculators

Figure 2. Role map in the EOS (Vaulta) ecosystem
Block producers, such as EOS Nation, EOS Authority, and Greymass, play a significant role
by ensuring network stability and participating in its governance. Developers create dApps and
maintain the infrastructure, shaping the innovative potential of the ecosystem. A decentralized
autonomous organization (DAQ) serves as a tool for collective governance and resource distribution.
Retail investors focus on trading, staking, and participation in Initial DEX Offerings (IDO), while
speculators respond to short-term market fluctuations, amplifying price dynamics and liquidity.
Investment flows in the ecosystem are directed not only to traditional segments such as token
trading and staking but also to more complex structures. These areas differ in functionality, user
engagement dynamics, and the maturity of financial instruments (table 1).

Table 1
Main directions of financial activity in the EOS (Vaulta) ecosystem [1]
Direction Functional features Examples The nature of
investment activity
Decentralized Token exchange, staking, farming, | Defibox, High, active trading,
finance (DeF1) stablecoin issuance, algorithmic | USN, sSEOS | high liquidity.
lending.
Non-fungible Creation and sale of digital objects | AtomicHub, | Average, undulating,
token (NFT) (art, game items), collecting. EOSNFT, depends on market
SimpleAssets | trends.
DAO Voting, fund management, decision- | Eden on EOS | Increasing, the
making by network users. (Vaulta), involvement of token
EOS DAC holders in
management.
Tokenomics and | Staking tokens, voting for producers, | EOS (Vaulta) | Moderately high, long-
staking receiving dividends, and participating term strategies and
in income distribution. token retention.
Gaming and | Integration of in-game tokens, NFT | Upland Low-medium,
metaverse assets | objects, the internal economy of depends on
blockchain games. community activity.

Thus, the investment environment of the EOS (Vaulta) ecosystem represents the result of the
interaction of architectural innovations, the delegated consensus mechanism, and the resource model
with social governance practices and the diversity of economic strategies. Such a combination ensures
high network throughput, stimulates the development of decentralized applications, and creates
conditions for the participation of various categories of users.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 42

The scientific publishing house «Professional Bulletin»

Structure of blockchain data and their analytical potential

The study of investment activity in distributed ecosystems is impossible without understanding
how the data forming the basis of the ledger are organized and processed. In the case of EOS (Vaulta),
the volume of generated information is characterized by high density, continuous variability, and
hierarchical organization. In addition to transaction records, the data include the results of smart
contract execution, voting parameters, delegated powers, and the dynamics of account balance states

(fig. 3).

Blockchain Layer
(blocks, transactions, and consensus)

Smart Contracts
(business logic, transaction validation)

2)

Applications dApps)
(DeFi, DAO, games, exchanges)

User Interaction
(end users, voting interfaces, and dashboards)

Figure 3. Multilayer data structure in EOS (Vaulta)

At the basic level, blockchain data represent transactions that record the transfer of digital
assets between network participants. However, in EOS (Vaulta), transactions often serve only as an
external interface for more complex operations, which conceal calls to smart contracts. Unlike
bitcoin, where the data structure has limited functionality, it supports multiple contracts calls within
a single transaction, creating specific conditions for analysis.

Alongside transactional activity, an important source of data is the delegation and voting
system implemented within the DPoS mechanism. Every EOS (Vaulta) token holder has the ability
to delegate their votes for the election of block producers, which is recorded in the public chain as
specially formatted operations. These data make it possible to analyze the level of political activity
in the ecosystem, the concentration of votes around specific validators, and to identify correlations
between investment flows and changes in the governance configuration. For example, when leading
block producers change, one can observe the outflow of tokens from their staking addresses and
increased activity of competing nodes, which provides a basis for building behavioral models of
investors.

However, the interpretation of these data is accompanied by serious difficulties. Information is
often presented in a fragmented manner, since records are distributed among smart contracts and
accounts without obvious links, which complicates their consolidation into a coherent picture. An
additional problem is the scale of the data, as hundreds of thousands of transactions are recorded
daily, and without automated filtering they lose their analytical significance. In this regard,
systematization and visual aggregation of information become especially important, allowing for
improved accuracy of interpretations and reduced time for extracting insights. Thus, the data structure
of EOS (Vaulta) possesses high analytical potential, but it is fully revealed only under the condition
of proper visual processing and contextual interpretation.

Interface and analytical solutions in the EOS (Vaulta) ecosystem

The development of the digital infrastructure of blockchain platforms goes beyond data
transmission protocols and consensus mechanisms. A significant indicator of the ecosystem’s
maturity is the availability of interface and analytical tools that ensure accessibility and transparency
of information (table 2).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 43

The scientific publishing house «Professional Bulletin»

Table 2
Interface and analytical tools [2]
Type of tool Appointment The effect on the ecosystem
Monitoring panels Real-time tracking of key metrics. | Increasing transparency and

manageability of processes.
Data visualization | Graphical representation of complex | Simplify =~ the analysis and

systems indicators. interpretation of information.
Interactive reports Dynamic formation of analytics. Adapting data to different user
groups.
Navigation tools Organization of access to | Ensuring the convenience and
information. accessibility of interaction.

Thus, these tools represent the primary level of organizational support for the ecosystem. This
approach is practically demonstrated by the Everipedia (IQ Network) project, where visual and
interface solutions are used to organize decentralized access to knowledge, confirming the importance
of convenient interfaces and analytics for engaging users in the ecosystem [3]. It is important to note
that their significance is reinforced when combined with functional capabilities that specify ways of
working with data and ensure the practical applicability of solutions (table 3).

Table 3
Functional capabilities of EOS (Vaulta) interface platforms [4, 5]
Function Content Application example

Filtering Data selection by transaction type, | Analyzing the dynamics of operations with
contract address, time periods. a specific smart contract.

Aggregation Summarizing and grouping data to | Estimation of the total volume of votes or
form a generalized picture. distribution of tokens.

Personalization | Configuring the display and saving | Subscribe to updates at selected addresses
of custom templates. or integrate wallets.

These functions form the basis of analytical work with EOS (Vaulta) blockchain data. They
make it possible to move from fragmented transaction records to a comprehensive picture of activity,
simplifying the identification of patterns and providing the possibility of customizing analysis for
specific research or investment tasks.

The logical continuation of this approach is the transition to more complex metrics, where the
focus shifts from individual transactions to systemic indicators. In this context, the visualization of
EOS (Vaulta) ecosystem tokenomics becomes particularly important. It covers such indicators as
emission dynamics, the distribution of tokens among different categories of holders, and the level of
inflation. The inclusion of these metrics in analytical dashboards makes it possible to align individual
participants’ strategies with system-wide processes and to assess the long-term sustainability of the
network [6].

In practice, it performs the function of integrating heterogeneous data, allowing the transition
from local observations to a macroeconomic level of analysis. Emission indicators reflect the pace of
monetary supply expansion and provide the basis for assessing inflationary pressure. The distribution
of tokens among retail investors, large holders, exchanges, and DAO indicates the degree of capital
concentration and the level of decentralization. The share of tokens in staking and their turnover rate
serve as indicators of trust in the ecosystem and the willingness of participants to lock funds for the
long term.

Thus, tokenomics becomes a link between the technical infrastructure and the economic
behavior of users. It makes it possible to identify signals of potential system overload, reduced
investment attractiveness, or, conversely, network resilience under conditions of growing
transactional activity.

The further development of the EOS (Vaulta) ecosystem involves adapting interfaces to the
needs of different categories of users. For retail participants, the priority remains the simplicity and
clarity of displaying balances, transaction histories, and staking parameters, while validators focus on
access to voting statistics, block production efficiency, and network load. The organizers of DAO

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 44

The scientific publishing house «Professional Bulletin»

require analytical tools to assess community activity, resource allocation, and the monitoring of
voting processes. Taking these differences into account fosters broader involvement in governance
mechanisms and increases the resilience of the entire system. Thus, interface and analytical tools
form the foundation of EOS (Vaulta) investment and management environment, ensuring process
transparency and consistency between the technical and economic levels of network functioning.

The role of UX/UI approaches in the visual analytics of the EOS (Vaulta) ecosystem

Modern blockchain analytics increasingly depends not only on the depth of processed data but
also on the quality of its presentation to the end user. The effectiveness of UX and user interface (UI)
solutions determines not only the convenience of interaction but also the level of trust in the platform,
the degree of analytical engagement, and the user’s willingness to make investment decisions [7].
Visual analytics here acts as an integral part of the overall trust architecture, and its effectiveness
directly depends on how well the logic of perception, navigation, and interpretation is structured.

In the context of a multilayered blockchain data structure, each interface element must be
organized in such a way that the user can easily distinguish levels of information significance. For
example, when viewing block producer voting, producers with the highest number of votes are
visually highlighted, while secondary data are displayed in the background without overloading
perception.

Navigation, as a tool for moving through the interface, must be predictable and intuitive. In
the EOS (Vaulta) ecosystem, navigation solutions are often implemented through multifunctional
panels, tabs, and dynamic filters. An important condition for a modern interface is adaptability,
meaning the system’s ability to work equally well across different devices and screens.

However, the technical organization of the interface is only the foundation. Of equal importance
is the cognitive component, namely the consideration of how humans perceive information. One of
the main tasks in this context is the reduction load, especially when working with multidimensional
and fragmented data. Visual patterns and metaphors play an important role here.

Interactivity is becoming increasingly important. Platforms provide users with the ability to
choose the level of detail in displayed charts: from overall trading volume to the structure of a
liquidity pool by tokens. Such customization of the interface makes visual analytics personalized,
which is especially important in the context of constantly changing investment strategies. When users
can determine for themselves which data are a priority and how they will be displayed, their
engagement and the effectiveness of their interaction with the platform increase.

Finally, in the context of the blockchain environment, where the level of trust directly influences
investor behavior, the quality of UX becomes one of the factors in shaping loyalty and readiness
for investment actions. If the interface is difficult to use, overloaded, or unclear, this not only reduces
the effectiveness of analysis but also creates a negative perception of the entire platform. Conversely,
intuitive, visually clean, and responsive interfaces contribute not only to user retention but also to
increasing the likelihood of their active participation in the economic and governance mechanisms of
the ecosystem.

A telling example is the work of the American team Greymass, which developed the Anchor
wallet, where intuitive interfaces were implemented for interacting with transactions, smart contracts,
and voting for block producers [8]. This case demonstrates that UX/UI-oriented solutions enhance
not only the convenience and security of working within the EOS (Vaulta) ecosystem but also its
long-term resilience.

Thus, UX/UI approaches in the visual analytics of the EOS (Vaulta) blockchain play not an
auxiliary, but a system-forming role. The success of the entire analytical environment, user trust, and
the viability of the decentralized economy depend on how deeply they are integrated into the
platform’s architecture.

Conclusion

Interface and visual-analytical tools of the EOS (Vaulta) ecosystem play an important role in
the interpretation of investment activity. Their significance is not only in enabling the transparency
of process in transactions but also in the potential to arrange data on tokenomics, voting, and user
behavior, thereby providing a full picture of the functioning of the decentralized network.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 45

The scientific publishing house «Professional Bulletin»

Visualization of economic and technical parameters enables the participants to make more informed
decisions, which directly affects the sustainability of the ecosystem.

Solutions in the field of UX/UI acquire particular importance, as they determine the quality of
interaction with analytical platforms. Intuitive navigation, flexibility, and responsiveness of interfaces
reduce cognitive effort and build trust in systems, leading to increased user engagement. Interface
solutions and visual analytics thus constitute a vital part of EOS (Vaulta) investment and management
ecosystem, and their further development in the direction of personalization and openness will
determine the long-term sustainability and competitiveness of decentralized platforms.

References

1. Shinkevich A.I., Kudryavtseva S.S., Samarina V.P. Ecosystems as an Innovative Tool
for the Development of the Financial Sector in the Digital Economy // Journal of Risk and Financial
Management. 2023. Vol. 16. Ne 2. P. 72.

2. Ehrensperger R., Sauerwein C., Breu R. A Maturity Model for Digital Business
Ecosystems from an IT Perspective // Journal of Universal Computer Science (JUCS). 2023. Vol. 29.
Ne 1. P. 34-72.

3. Maunu J. Revenue models of decentralized applications: an empirical study how
decentralized software products generate income. 2025.

4. Liu H., Mao Y., Li X. An Empirical Analysis of EOS Blockchain: Architecture,
Contract, and Security // ArXiv preprint arXiv: 2505.15051. 2025.

5. Kovalenko A. Architectural and algorithmic methods for enhancing the resilience of
high-load backend services in the financial sector // Norwegian Journal of development of the
International Science. 2025. Ne 158. P. 87-91.

6. Moncada R. Blockchain tokens, price volatility, and active user base: An empirical
analysis based on tokenomics // International Journal of Financial Studies. 2024. Vol. 12. Ne 4. P.
107-110.

7. Drogunova Y. Integration of UI and API testing into CI/CD processes as a factor in
accelerating the release of digital products // Universum: technical sciences: electron. scientific
journal. 2025. Ne 5(134). P. 26-29.

8. Anchor Wallet for Desktop and Mobile / Greymass // URL:
https://www.greymass.com/anchor (date of application 15.08. 2025).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 46

https://www.greymass.com/anchor

The scientific publishing house «Professional Bulletin»

UDC 004.89:65.011

PREDICTIVE ANALYTICS BASED ON MACHINE LEARNING AS A TOOL
FOR COST OPTIMIZATION IN OPERATIONS MANAGEMENT

Mukayev T.
master's degree, Department of engineering mathematics and
technology, University of Bristol (Bristol, United Kingdom)

HNPEAUKTUBHASA AHAJIMTUKA HA OCHOBE MAIINHHOI'O
OBYYEHMUS KAK UHCTPYMEHT OIITUMM3ALIUU 3ATPAT B
OIIEPAIIMOHHOM YIIPABJIEHUH

Myxaes T.M.
mazucmp, Daxynemem 3HepeemuKu U Heghme2az06oti UHOYCMpu,
bpucmonvckuil ynueepcumem (bpucmonws, Benuxobpumanus)

Abstract

This article examines the role of predictive analytics, based on machine learning methods, in
enhancing the efficiency of operations management. It explores approaches to the application of
predictive analytics in cost management, resource and supply chain management, as well as in
maintenance planning. Particular attention is given to the resilience of business processes and the
reduction of inefficiencies through accurate forecasting and the integration of analytical tools into
strategic planning. It investigates the potential of predictive models to reduce costs, improve
equipment reliability, and optimize supply chains.

Keywords: predictive analytics, machine learning, operations management, cost optimization,
resource management, supply chain management.

AHHOTAIUSA

B nmaHHOHM cTaThe paccMaTpuBAeTCs pOJIb NMPEAUKTUBHOM AHAJIUTUKM HAa OCHOBE METOJOB
MAIIMHHOTO O0Y4YeHHs B TMOBBIMICHUU 3PPEKTUBHOCTH ONEPALMOHHOTO yrpaBieHus. M3ydarorcs
MOAXOJbl K INPUMEHEHUIO IPEAMKTUBHON aHAJIUTHKU B YIPABJICHUU 3aTpaTaMH, pecypcaMu H
CHaO)KeHHWEM, a TakXke B IUIAHUPOBAHUM TEXHHUYECKOro obcmyxuBanua. Ocoboe BHUMaHHE
yIIeNseTcss BOMPOCAaM YCTOWYMBOCTH OW3HEC-TIPOLECCOB W COKPAIICHUS HENPOU3BOAMTEIBHBIX
pacxoloB 3a CYET TOYHBIX IIPOrHO30B M MHTETPALMM AHAIUTUYECKUX HHCTPYMEHTOB B
CTpaTErnyeckoe miaHuposanue. Mccnenyercs noTeHIMan UCIOAb30BaHUS IPEIUKTUBHBIX MOJENIEH
JUIL CHIDKEHHSI M3JIEP)KEK, IOBBIIICHHUS HAJSKHOCTH pabOThl 00OpYIOBaHHS W ONTHMH3ALUU
LIENIOYEK [TOCTABOK.

KiroueBble ci10Ba: MpEeIUKTHBHAS AHAIMTUKA, MAlIMHHOE OOYy4YeHHE, OIEPaLMOHHOE
yIpaBJIeHUE, ONITUMU3AIIMS 3aTpaT, YIPaBICHHE PeCypcamMH, yIpaBlieHue CHAOKEHHEM.

Introduction

In the course of constant competition and an unstable economic environment, companies are
starting to seek to increase the efficiency of operations management. It is now possible through the
incorporation of analytical tools. Generally established methods of planning and cost control often
prove insufficiently flexible. They are primarily focused on examining historical data and do not
adequately account for the dynamic changes in both internal and external conditions. Against this
scenery, predictive analytics assumes particular importance.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 47

The scientific publishing house «Professional Bulletin»

Machine learning (ML) serves as the technological bases of predictive models, as it provides
high forecasting accuracy and supports the automation of decision-making processes. The application
of such approaches creates new opportunities for cost optimization, maintenance planning, and supply
chain management. Evidence from practice often demonstrates that accurate forecasts not only
contribute to cost reduction but also reduce possible risks associated with resource chain disruptions
or equipment failures. The goal of this research is to examine predictive analytics based on ML as a
tool for cost optimization in operations management.

Main part. Predictive analytics and ML in operations management

The spread of digital technologies has altered managerial approaches to process management
in production. Predictive analytics has attracted special attention in the last few years as involving
statistical techniques and ML algorithms to predict the future state of systems and processes. Unlike
conventional analytical tools that focus primarily on retrospective data analysis, predictive methods
aim to reveal patterns that can describe likely scenarios of future development (table 1).

Table 1
Traditional and predictive approaches to operations management [1, 2]
Aspect Traditional approach Predictive approach

Cost planning | Reactive (based on actuals). | Proactive (based on forecasts). Data-driven
Manual estimation of expenses. optimization of budget allocation.

Supply Excessive inventories or | Optimized inventory levels. Uses historical

management shortages. Limited to recent usage | trends, seasonality, and demand forecasts.
metrics.

Maintenance Scheduled maintenance or reactive | Predictive =~ maintenance based on
repairs upon failure. probability of failure and real-time

equipment data.

Resource Static allocation. Based on | Dynamic adaptation. Aligned with

utilization estimated peak loads. forecasted demand across time intervals.

Cost efficiency | Prone to overprovisioning or | Optimized for both cost efficiency and
underutilization. performance.

Predictive analytics occupies an intermediate position between descriptive and prescriptive
analytics. While the former answers the question «what has happened? » and the latter addresses
«what actions should be taken? », the predictive level provides insight into «what is likely to happen?
». In this sense, it is not merely a matter of recording past events, but of modeling possible future
developments.

These edges can explain the expanding interest in predictive analytics across industries. As
more and more business processes become digital, the need for tools that can make accurate
predictions keeps spreading. Because of this, the predictive analytics market is experiencing stable

growth, as depicted by the projected increase in revenue in the coming years (fig. 1).
61,9

v D A A S N A
N ’LQ’LQ’LQ’LQ’\;Q’LQ’LQ") NN

L i AR s R A e A i i
Figure 1. Predictive analytics market revenue forecast worldwide, billion dollars [3]

60‘
50}
40t

30¢

10}

0__

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 48

The scientific publishing house «Professional Bulletin»

Algorithms based on ML serve as the fundamental technological basis of predictive analytics.
This branch of artificial intelligence relies on algorithms that are trained on historical data and are
capable of identifying complex nonlinear relationships that traditional statistical methods cannot
capture [4]. Among the most widely used algorithms in operations management tasks are linear and
logistic regression, decision trees, ensemble methods (such as gradient boosting and random forests),
as well as neural networks.

Each of these approaches has distinct advantages. For instance, in retail sales forecasting, an
optimized Random Forest algorithm achieved a coefficient of determination of R? = 0.945, compared
to 0.531 for linear regression, while also reducing the root mean squared logarithmic error by 0.117.
Neural networks, in turn, have proven highly effective for handling large and unstructured
datasets [5]. Further benefits are provided by super-ensemble models, which can significantly
improve forecasting accuracy. In streamflow forecasting, predictive accuracy increased by 20,6%
compared to linear regression, while neural networks demonstrated improvements of 15-17% [6].

The application of ML in operations management enables a shift from static to dynamic
planning. At the same time, the implementation of predictive models entails a number of challenges.
Chief among them is the issue of data quality. Incomplete or imbalanced datasets can lead to
significant forecasting errors. A telling example is Unity, where the ingestion of incorrect data from
a major client into the ML algorithm used for ad placement not only slowed growth but also
compromised the performance of the model. According to the company’s management, the resulting
losses in 2022 amounted to approximately $110 million [7].

Another challenge lies in the interpretability of models. The most accurate algorithms, such
as deep neural networks, often function as a «black box», making it difficult to explain managerial
decisions derived from their forecasts. On top of this problem, the issue of overfitting must be
considered, wherein a model shows high accuracy on historical data but proves ineffective when
predicting new situations.

Despite these circumspections, the potential of predictive analytics in the framework of
operations management remains considerable. It helps managers to forecast system behavior and to
identify the main factors influencing future changes. This knowledge serves as a starting point for
developing cost-optimization strategies, making predictive technologies an integral component of
modern management concepts.

In this way, predictive analytics and ML provide the foundation for transitioning to proactive
operations management. Their use allows organizations to view costs and resources not as static
entities but as dynamic variables, thereby creating the conditions for building resilient management
models.

Cost optimization and resource management based on forecasts

Contemporary organizations strive to increase the efficiency of operational processes through
precise planning and the minimization of uncertainty. Within the context of it, predictive analytics
emerges as a tool that enables decision-making informed by the anticipated future states of systems
and processes.

Forecasting costs plays a central role in operations management. Predictive models allow for
the construction of development scenarios and the comparison of alternative budget allocation
strategies. In the manufacturing sector, such models can anticipate increases in raw material costs due
to market price fluctuations, thereby providing organizations to adjust procurement policies in
advance.

In the service sector, forecasting supports the adjustment of personnel expenses in response to
seasonal variations in demand. Thus, cost management evolves from being merely an accounting
mechanism for recording expenditures into a dynamic system capable of adapting to changing
conditions. Evidence from a study of over 30000 U.S. manufacturing establishments further
demonstrates that firms actively employing predictive analytics achieve significantly higher
productivity, with average sales approximately $918000 greater than those of comparable
competitors [8].

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 49

The scientific publishing house «Professional Bulletin»

One of the most promising directions is the use of predictive models in financial risk
management. Through scenario modeling, it is possible to evaluate which specific events, for
example, supply chain delays, rising energy tariffs, or equipment failures, may lead to significant
budget deviations and to plan compensatory measures in advance.

Supply chain and resource management represent some of the most cost-intensive areas for
any organization. Predictive data analysis makes it possible to generate precise demand projections
and identify ideal inventory levels. Companies frequently either keep excessive stockpiles or
experience shortages that interrupt production cycles under conventional management practices.
Various ML models are used in supply chains and logistics to estimate delivery times and determine
the likelihood of delays. The integration of supply chain management (SCM) systems with predictive
analytics should receive special attention. Such an approach creates the conditions for more accurate
procurement planning and a reduction in nonproductive expenditures [9].

An important area of application for prospective analysis is predictive maintenance.
Traditional approaches involve scheduled servicing at predetermined intervals. This methodology is
not always considered efficient, since equipment may fail earlier than expected or operate reliably for
longer than planned. Predictive models make it possible to forecast the likelihood of failure based on
data on equipment condition and external factors. This method facilitates substantial reductions in
repair costs by preventing unplanned downtime and alleviating expenditures associated with
unscheduled maintenance (fig. 2).

Point P
Failure initiated

A
v

Normal
Operation

Predictive
Maintenance

Machine Condition

Point F

. . _/ .
Time Functional failure

Figure 2. Potential failure diagram presenting inspection intervals and predictive maintenance [10]
Practical applications of predictive analytics demonstrate significant economic benefits.
Empirical findings from a 2025 study further indicate that the use of predictive analytics across
organizations in various sectors has a notable impact on key dimensions of performance. Respondents
reported improvements in forecast accuracy, acceleration of decision-making processes, reductions
in operational costs, and higher levels of customer satisfaction (table 2).

Table 2
Impact of predictive analytics on business performance [11]
Metric Mean (%) Standard deviation

Predictive analytics adoption 67,4 10,6
Decision-making speed 73,3 10,2
improvement

Forecasting accuracy 76,6 10,2
Operational cost reduction 60,4 12,1
Customer satisfaction increase 67,6 10,1

In addition to examples of predictive analytics found in academic research, there are also
notable cases of its application in industry. For instance, Pinterest achieved a 20% reduction in
infrastructure costs through more accurate cloud resource scaling, ensuring payment only for the
capacity actually utilized. Similarly, Slack Technologies reduced cloud service expenses by 15-20%
by detecting billing anomalies early and renegotiating contracts with providers [12].

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 50

The scientific publishing house «Professional Bulletin»

McDonald’s, as part of its digital transformation and in collaboration with Google Cloud,
integrated predictive analytics into procurement and inventory management processes across more
than 40000 restaurants. This initiative helped the company to optimize supply chains, lower costs,
and boost the resilience of its supply operations [13].

A common thread across these cases is the transition to a new mode of cost management. Rather
than reacting to past events, organizations are acting proactively. This shift reduces expenditures and
fosters the development of long-term sustainability strategies, where each forecast becomes a tool for
strengthening competitiveness [14]. Leveraging predictive insights in finance, procurement, resource
management, and maintenance thus lays the groundwork for more resilient business models.

Conclusion

Predictive analytics powered by ML is turning into a valuable asset in terms of improving the
effectiveness in operation management. Through the use of forecasting models, entities are in a
position to plan for future states in their systems, check prospective risks, as well as arrive at more
prudent resource and cost allocation decisions. Through this, entities are in a position to transition
from reactive management approaches to proactive management approaches whose core is
anticipating potential modifications as well as their abilities to change ahead of time.

The use of predictive technologies in supply chain management and budgetary planning shows
great promise for lessening expense while guaranteeing the durability of business processes. The
integration of precise forecasts with adaptive management approaches serves to reduce inefficiencies
to a minimum, enhance equipment reliability, and better-optimize supply chain systems. Aligned
together, these variables put predictive analytics on solid ground as the means to establishing
sustainable long-term sources of competitiveness.

References

1. Yarov Y. Optimization of business processes in construction companies using digital
technologies and automation // Sciences of Europe. 2025. Ne 167. P. 67-70.

2. Zharmagambetov Y. Application of machine learning algorithms in financial risk
management systems // International Research Journal of Modernization in Engineering Technology
and Science. 2025. Vol. 7. Ne 5. P. 1503-1509.

3. Predictive Analytics Statistics 2025 By A Practical Approach / Market.us Scoop /
URL: https://scoop.market.us/predictive-analytics-statistics/ (date of application: 17.08.2025).

4. Kiselev R. Cyberattack prediction models using machine learning // Professional
Bulletin: Information Technology and Security. 2024. Ne 1/2024. P. 24-28.

5. Ganguly P., Mukherjee I. Enhancing retail sales forecasting with optimized machine
learning models // In2024 4th International Conference on Sustainable Expert Systems (ICSES).
2024. P. 884-889.

6. Hristos T., Georgia P., Andreas L. Super ensemble learning for daily streamflow
forecasting: large-scale demonstration and comparison with multiple machine learning algorithms //
Neural Computing & Applications. 2021. Vol. 33(8). P. 3053-3068.

7. The Impact of Bad Data and Why Observability is Now Imperative / IBM / URL:
https://www.ibm.com/think/insights/observability-data-benefits (date of application: 23.08.2025).
8. Brynjolfsson E., Jin W., McElheran K. The power of prediction: predictive analytics,

workplace complements, and business performance // Business Economics. 2021. Vol. 56(4). P. 217-
39.

9. Stepanov M. Adaptive control systems for optimizing electric drive operation and
reducing energy consumption in challenging conditions // Original research. 2024. Vol. 14. Ne 9. P.
86-92.

10. Achouch M., Dimitrova M., Ziane K., Sattarpanah Karganroudi S., Dhouib R., Ibrahim
H., Adda M. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges //
Applied Sciences. 2022. Vol. 12(16). Ne 8081. P. 1-22.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 51

https://scoop.market.us/predictive-analytics-statistics/
https://www.ibm.com/think/insights/observability-data-benefits

The scientific publishing house «Professional Bulletin»

11. Alhumaidi N. Quantitative Analysis of Predictive Business Analytics for Dynamic
Decision-Making: A Survey-Based Study on Organizational Strategy Optimization // International
Business & Economics Studies. 2025. Vol. 7. P. 103-124.

12. Kass E. Predictive Analytics for Cloud Resource Planning and Cost Forecasting /
Authorea // URL: https://www.authorea.com/users/925546/articles/1297287-predictive-analytics-
for-cloud-resource-planning-and-cost-forecasting (date of application: 27.08.2025).

13. Kotagi V. Leveraging Big Data and Business Intelligence: A Case Study of
McDonald's Competitive Advantage // Research and Applications of Web Development and Design.
2024. Vol. §(1). P. 8-14.

14. Nazarova Ye. The influence of psychoanalytic practices on leadership and
organizational culture // International Journal of Professional Science. 2025. Ne 4(1). P. 71-77.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 52

https://www.authorea.com/users/925546/articles/1297287-predictive-analytics-for-cloud-resource-planning-and-cost-forecasting
https://www.authorea.com/users/925546/articles/1297287-predictive-analytics-for-cloud-resource-planning-and-cost-forecasting

The scientific publishing house «Professional Bulletin»

UDC 004.8: 519.6

FEATURE SELECTION METHODS IN MACHINE LEARNING: FROM
SIMPLE FILTERS TO INTERPRETABILITY WITH SHAP

Bondarenko K.
master’s degree, HSE University (Moscow, Russia)

METOAbI OTBOPA IIPU3HAKOB B MAHIMHHOM OBYYEHHUU: OT
HHPOCTBIX ®UJIBTPOB 10 UHTEPIIPETUPYEMOCTH C SHAP

Bongapenko K.A.
mazucmp, Hayuonanouulii ucciedosamenbCKull yHugepcumem
«Bvicuas wkona sxkonomurxuy (Mockea, Poccus)

Abstract

This paper examines feature selection methods in machine learning tasks and their impact on
model performance and interpretability. The problem of high-dimensional data remains one of the
most critical challenges in modern analytics, as redundant and irrelevant features increase the risk of
overfitting, complicate computations, and reduce the transparency of conclusions. The aim of this
study is to provide a comparative analysis of filter, wrapper, and embedded feature selection methods,
as well as interpretation techniques based on SHAP, with an emphasis on their practical application.
As an example, the widely used California Housing dataset was employed for modeling and feature
importance evaluation. The analysis utilized permutation importance, partial dependence plots, and
SHAP to assess and compare the relevance of features.

Keywords: Feature selection, filter methods, wrapper methods, embedded methods,
interpretability, SHapley Additive exPlanations (SHAP).

AHHOTAIUSA

B nmanHO#l paboTre paccMmarpuBalOTCS METOIbl OTOOpa NPU3HAKOB B 33/a4aX MAIIMHHOTO
oO0y4eHHUs] U MX BIMSHUE HAa Ka4eCTBO MOJENCH M MHTEPIPETUPYEeMOCTh pe3ynbTaroB. IIpobGnema
BBICOKOM Pa3MEpPHOCTH AAHHBIX OCTAETCA OJHOM W3 BaXHEHIIUX B COBPEMEHHOM aHAJIUTHKE,
MOCKOJIbKY W30BITOYHBIE M HEPEJCBAHTHBIC TPHU3HAKK YBEJIMYMBAIOT PHUCK IEPEOOyUCHHS,
YCIIOXKHSIOT BBIYUCICHUS U CHUKAIOT MPO3PAYHOCTh BBIBOJOB. Llenb MccaeoBanus 3aKII04aeTcs B
CPaBHUTEIHHOM aHaiu3e (UIBTPAlMOHHBIX, Wrapper- 1 embedded-meTonoB oTOOpa NpU3HAKOB, a
TaK)Ke MHTEPIPETAUOHHBIX TEXHUK Ha ocHoBe SHAP, ¢ akmeHToM Ha HX NpPaKTHYECKOe
npuMeHeHne. B kauecTBe mpuMepa HCHoib30BaH mnomyssipHblid natacer California Housing, nHa
KOTOPOM TIPOBEJICHO MOJEIMPOBAaHUE U OLIEHKA BaKHOCTU NMpPU3HAKOB. J[1s aHanmM3a NMPUMEHSIINChH
MeTonbl permutation importance, partial dependence plots u SHAP-ananus.

KnawueBble ciaoBa: oT0Op MpHU3HAKOB, (MIBTPAIIMOHHBIE METOMABI, Wrapper-MeToIbl,
embedded-meTonbl, nuaTepnpeTpyeMocts, SHapley Additive exPlanations (SHAP).

Introduction

In machine learning (ML), features are measurable characteristics of an object that serve as the
basis for model predictions. For example, in housing price prediction tasks, features may include floor
area, number of rooms, year of construction, and location. The choice and representation of features
directly influence the effectiveness of the model, including its accuracy, robustness to noise, and
generalization ability.

Statistical reports indicate a steady increase in both the number of data sources and the volume
of available information [1]. These datasets vary in complexity and interpretability, which can

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 53

The scientific publishing house «Professional Bulletin»

become a challenge for model development. Modern datasets may contain hundreds or even
thousands of features, many of which can be irrelevant, redundant, or even detrimental to training.
Consequently, feature selection remains a major step in data preprocessing, as it helps improve certain
metrics and speed up model performance across a wide range of applications, particularly in medicine
and finance. The importance of feature selection is further reinforced by growing requirements for
explainable artificial intelligence (XAI) [2]. Stakeholders increasingly demand to understand how
and why a model arrives at specific outcomes. Methods such as SHAP provide post hoc explanations,
increasing trust among users, clients, and regulatory bodies.

Main part. Feature selection in ML

High-dimensional datasets are occurring more often in modern ML applications, ranging from
biomedical records and sensor data to financial transactions and industrial monitoring. While the
availability of numerous features potentially expands the descriptive power of models, it also
introduces various technological and methodological challenges. Irrelevant variables can increase
computational cost, complicate model interpretation, and lead to overfitting. Adequate feature
selection addresses these issues by identifying and retaining the most informative subset of variables.
Practical studies show that eliminating irrelevant variables and focusing on the most significant
features can lead to a substantial increase in accuracy, up to 15% compared to models that use all
available data [3].

In general, feature selection methods aim to balance three objectives: efficiency (reducing the
dimensionality of data to speed up training and inference), accuracy (improving generalization by
removing noise), and interpretability (allowing domain experts to understand which variables play a
key role in decision-making). Unlike dimensionality reduction techniques such as principal
component analysis (PCA), which transform the feature space into new components, feature selection
preserves the original variables, making the results easier to communicate in applied domains.

Three broad families of feature selection techniques are typically distinguished: filter, wrapper,
and embedded methods. Each of these approaches reflects a trade-off between computational
efficiency, predictive performance, and interpretability. In practice, the choice of method can depend
on the dataset size, model complexity, and the ultimate purpose of the analysis.

Filter methods

Filter methods are popular due to their simplicity and efficiency at the initial stage of data
analysis. According to recent studies [4], they are among the most widely used approaches in ML
feature selection research. These methods are independent of a specific model algorithm and rely only
on the statistical relationship of each feature with the target variable or on the general properties of
the data (fig. 1).

Feature selection

Alfeatures == (statistcal | == SSIeCRE R0y TERITE
correlation criteria) 9

Figure 1. Diagram of filter methods

One of the common approaches is correlation analysis, which involves studying correlations
between features and the target variable, as well as correlations among the features themselves. The
logic is that informative features should be strongly correlated with the target variable, while at the
same time features should not be highly correlated with each other, so as not to duplicate the same
information. In practice, this is implemented by calculating correlations (e.g., Pearson’s coefficient
for pairs of numerical variables) and removing features that are either weakly related to the target or
strongly duplicating other features.

Another widely used technique is Chi-square test (¥?). For classification problems with
categorical (discrete) features, the y> test is commonly applied to assess the statistical dependence
between a feature and the target class. The y? statistic is computed between the distribution of feature
values and classes, and the result is compared with the expected value under the null hypothesis of
independence. Features are ranked according to their ¥? values (or the corresponding p-values). A

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 54

The scientific publishing house «Professional Bulletin»

high y* value and low p-value suggest that the feature is likely dependent on the target class, making
it informative for classification.

For feature selection in classification tasks with numerical variables, the analysis of variance
(ANOVA) F-test is widely used. The one-way ANOVA F-test compares the variance of feature
values between groups (classes) with the variance within groups. A high F-statistic indicates that the
mean values of the feature differ significantly across classes compared to within-class variation.
Features with high F-values are therefore considered discriminative and informative. In ML libraries
(e.g., sklearn.feature_selection), ANOVA is implemented as the f_classif method. It returns an F-
value and corresponding p-value for each feature, which can be used to rank and select the top-N
features. However, ANOVA assumes approximate normality of distributions and homogeneity of
variances, so results should be interpreted with caution for skewed or heteroscedastic data.

Finally, another powerful criterion is mutual information, which measures the amount of
shared information (dependency) between a feature and the target variable. Mutual information
estimates how much the uncertainty of the target variable is reduced when the feature is known.
Formally, it quantifies the number of bits of information the feature contains about the class [5]. A
key advantage of mutual information is its ability to capture non-linear and non-parametric
dependencies between X and Y, unlike correlation which is limited to linear relationships. Features
with high mutual information relative to the target are considered highly relevant. In practice, mutual
information can be estimated for each feature via discretization or kernel density estimation. In scikit-
learn, the functions mutual_info_classif and mutual_info_regression are available for this purpose.

Filter methods remain a popular choice at the initial stage of data analysis due to their simplicity
and model-agnostic nature. However, their main limitation lies in the fact that they evaluate features
independently of the chosen learning algorithm. As a result, the selected subset of features may not
always align with the characteristics of a specific model. Therefore, practitioners may resort to other
feature selection strategies.

Wrapper methods

Wrapper methods perform feature selection by evaluating the performance of a model on
different subsets of features. Unlike filter methods, which assess the importance of features
independently of the model, wrapper approaches “wrap” the selection process around a ML
algorithm, using its performance metric to determine the usefulness of features. In this case, candidate
subsets are generated, evaluated with a model, and iteratively refined until the best-performing subset
is selected (fig. 2).

All features I:>Subset generator(- =T"

Best

Candidate = $ Evaluation with ’:J; .
subset ML model peg,(;)r;n;{]g

4

Final ML model

Figure 2. Diagram of wrapper methods
This approach allows capturing nonlinear relationships and interactions between features, for
example, combinations of features that individually have little impact on the result but together
significantly improve the model. The main drawback of wrapper methods is their high computational
cost, since the model must be trained repeatedly on different feature sets. To avoid overfitting during
the selection process, cross-validation is usually applied to evaluate the model at each step.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 55

The scientific publishing house «Professional Bulletin»

One of the main approaches is Recursive Feature Elimination (RFE), which iteratively
eliminates less important features by repeatedly training the model. It starts with the full set of features
and fits a base algorithm (e.g., decision tree or logistic regression). The least significant feature (based
on the model’s importance estimate, such as coefficient value or contribution to performance metric)
is then removed, and the model is retrained on the reduced set [6]. This process continues recursively,
eliminating one or even several features at each step, until the desired number of most important
features remains. In this way, RFE implements a “greedy” backward elimination strategy, similar to
stepwise regression. The advantage of RFE is that it considers the effect of features in the context of
the model, allowing it to identify an optimal subset even when features are correlated. However, for
datasets with very high dimensionality, RFE can be computationally expensive.

Another important method is Sequential Feature Selection (SFS), which represents a family
of methods where features are added or removed one at a time in a sequence of steps, with the model
performance evaluated at each stage. SFS can operate in two modes: stepwise forward selection or
stepwise backward elimination. In the forward mode, the algorithm starts with an empty set. On the
first step, all features are evaluated individually, and the one that gives the best model performance
(e.g., highest cross-validated accuracy) is selected. On subsequent iterations, each remaining
candidate feature is tested in combination with the already selected set, and the one that provides the
greatest performance gain is added. The process continues until a predefined number of features is
reached or no further performance improvement is observed. In the backward mode, the algorithm
starts with the full feature set and iteratively removes the least useful feature, evaluating model
performance without each candidate, until the stopping criterion is met.

In summary, wrapper methods allow for the identification of feature subsets optimized for a
specific model, often leading to superior predictive performance. However, their high computational
demands and susceptibility to overfitting make them less practical for very large datasets. This trade-
off has led to increasing interest in embedded methods, which integrate feature selection directly into
the model training process.

Embedded methods

Embedded methods combine the process of feature selection with model training, meaning that
selection occurs “internally”” during the algorithm’s learning phase. These approaches are considered
a compromise between simple filter methods and computationally expensive wrapper methods [7].
On the one hand, the model itself “decides” which features are important (as in wrapper methods),
while on the other hand there is no need to manually iterate through multiple models, since the
selection is computationally more efficient. In fact, the learning algorithm implicitly performs feature
selection by regularizing or evaluating the contribution of features (fig. 3).

Internal feature

i Selected
evaluation <€ =
(built-in) features
i
i
Machine I . _
All features v:> Leamning | Fin fr:é:ja;red
algorithm

Figure 3. Diagram of embedded methods

At a preliminary stage, all features are provided to the learning algorithm, which then evaluates
their relevance internally during training. As a result, only the most significant predictors are retained
and directly used in the final model. This integration of training and feature selection shows the main
advantage of embedded approaches — features are evaluated as part of model building, not in a
separate step.

L1 Regularization (LASSO). Regularization with the L1 norm (e.g., in the linear Lasso model)
performs feature selection by adding a penalty term to the loss function proportional to the sum of

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 56

The scientific publishing house «Professional Bulletin»

the absolute values of the model coefficients. As a result of this penalty, many coefficients are shrunk
exactly to zero, the corresponding features are automatically excluded from the model. Thus, L1
regularization simultaneously improves the generalization ability of the model (by preventing
overfitting through complexity control) and performs embedded feature selection by setting irrelevant
parameters to zero. By contrast, L2 regularization (Ridge) reduces coefficients but does not drive
them to zero, so L2 does not actually perform feature selection. A practical illustration of the
effectiveness of L1 regularization can be found in studies using the EEG (Electroencephalography)
Emotion dataset, where combining Random Forest (RF) with LASSO feature selection improved
classification accuracy from 98.78% to 99.39%, demonstrating how penalization and embedded
feature selection can increaase model performance in high-dimensional biomedical data [8].

Decision Trees and Ensembles (Random Forest, XGBoost, LightGBM, etc.). Tree-based
algorithms have a built-in ability to evaluate feature importance through specific importance
measures. During tree construction, features that provide the greatest reduction in impurity or error
are chosen for splits. After training, it is possible to compute how much each feature reduced the
splitting criterion on average, this serves as the feature importance metric. In RF (ensembles of many
trees), importances are averaged across all trees. In gradient boosting, the contributions of each
feature are accumulated over all base learners. Importances are typically normalized so that their sum
across all features equals 1.

Embedded approaches combine model training and feature selection within a single process.
Their advantage lies in the ability to directly exploit the structure of the learning algorithm, yielding
feature subsets that are optimized for the chosen model. However, the results are often model-
dependent, meaning that different algorithms may assign different levels of importance to the same
features.

Interpretability and explanation with SHAP

SHAP (SHapley Additive exPlanations) is a modern method for interpreting the results of
ML models, based on the concept of Shapley values from game theory. Unlike feature selection
methods, which aim to identify significant features for the model, SHAP is used for post hoc
explanation of an already trained model. It decomposes the model’s prediction into the sum of
individual feature contributions, showing how much and in what direction each feature influenced a
specific prediction. The sum of all SHAP values for an observation, plus the baseline value, equals
the model’s prediction, ensuring local accuracy of the explanation.

One of the key strengths of SHAP is its model-agnostic nature: it can be applied to any ML
model as an interpretation tool without requiring modifications to the algorithm itself. Optimized
implementations exist for decision trees and tree-based ensembles, making SHAP efficient enough to
compute even on large datasets. SHAP provides both local explanations (at the level of individual
predictions) and global interpretability (overall feature importance across the model).

With its help, one can ensure that the model relies on expected, meaningful features rather than
on random noise factors. Moreover, SHAP results can help identify problematic dependencies. If
SHAP reveals a suspiciously strong influence of a non-obvious feature, this may indicate data leakage
or correlations requiring further analyst attention.

To compute SHAP values, the algorithm considers all possible feature coalitions and the
marginal contribution of each feature to improving the prediction when it is added to a coalition.
Exhaustively enumerating all combinations of features is computationally expensive, so
approximation algorithms have been developed. In particular, the authors of SHAP proposed
specialized methods to accelerate computation: the model-agnostic KernelSHAP and the high-
performance TreeSHAP for decision tree models [9].

In addition to Shapley-value-based methods (SHAP), another widely used technique for
interpreting ML models is LIME (Local Interpretable Model-agnostic Explanations). Its key idea
is to approximate the behavior of a complex “black-box” model in the vicinity of a single observation
using a simple and interpretable model, such as linear regression. This approach makes it possible to
explain individual predictions by highlighting the features that had the strongest influence on the
outcome for that specific instance.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 57

The scientific publishing house «Professional Bulletin»

The advantage of LIME lies in its simplicity and universality. It can be applied to any model
and type of data with relatively low computational costs. However, interpretations obtained through
LIME may be unstable. Small changes in the data or parameters can lead to significant differences in
explanations. For this reason, LIME is often regarded as a tool for rapid prototyping or preliminary

hypothesis testing, whereas SHAP is used for more rigorous and reproducible analysis (table 1).

Table 1
SHAP and LIME differences [10, 11]
Aspect SHAP LIME
Theoretical Based on Shapley values from | Based on local linear approximations
basis cooperative game theory of the model
Output Provides consistent and additive | May produce different explanations for
consistency explanations the same instance depending on
sampling
Scope Both local (per-instance) and global | Primarily local explanations for
(overall feature importance) | individual predictions
explanations
Model coverage | Model-agnostic, with optimized | Fully model-agnostic, works with any
implementations for tree-based | black-box model
models
Computation Higher, especially for complex | Generally faster, but depends on
cost models, though TreeSHAP reduces | number of samples used
cost
Interpretability | Quantifies exact contribution of each | Provides approximate influence of
feature to prediction features using surrogate model
Stability More stable and reproducible | More sensitive to randomness and
explanations sampling variations

SHAP provides more reliable and reproducible explanations, allowing not only the
identification of the most important features but also the visualization of their influence in an intuitive
way. Such tools make ML results understandable and accessible even to specialists without deep
expertise in data science.

Practical study

To illustrate the application of interpretation techniques and feature importance evaluation, an
experimental modeling study was conducted. The experiments were conducted in Python 3.11
(Jupyter Notebook, Anaconda) using the libraries scikit-learn v1.5, SHAP v0.44, and matplotlib v3.9.
As a test dataset, the California Housing dataset from scikit-learn was used (20,640 observations, 8
features). The models were built with the Random Forest Regressor algorithm configured with 400
trees and the parameters max depth=None, min_samples_split=2, and min_samples_leaf=1. Feature
importance was analyzed using three methods: Permutation Importance, Partial Dependence Plot, and
SHAP values.

At the initial stage of analysis, it is often reasonable to apply traditional statistical methods in
order to evaluate straightforward dependencies between features. Such techniques provide a
preliminary understanding of the dataset and can highlight apparent correlations before more
advanced modeling is applied. The correlation heatmap in this case illustrates linear relationships
among the housing attributes, showing, in particular, a strong positive correlation between AveRooms
and AveBedrms, as well as a link between MedInc and the target variable MedHouseVal (fig. 4).

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 58

The scientific publishing house «Professional Bulletiny

MediInc
HouseAge - -0.12
AveRooms- 0.33 -0.15
AveBedrms - -0.06 -0.08
Population- 0.00 -0.30
AveOccup- 0.02 0.01
Latitude--0.08 0.01

Longitude - -0.02 -0.11

MedHouseVal ﬁ

0.11

MedInc
HouseAge -

0.33

-0.15

-0.00

0.11

-0.03

o
AveRooms - o
v

-0.06

-0.08

-0.01

0.07

0.01

-0.05

AveBedrms -

-0.11

) o
Population - o
N}

0.00

-0.30

-0.07

0.10

0.02

0.01

-0.00

-0.01

AveOccup -

- 1.00
-0.08 -0.02 M

0.75

0.01 -0.11 0.11
0.11 -0.03 0.15 0.50
0.07 0.01 -0.05 -0.25
0.11 0.10 -0.02 [0.00

0.00 -0.02
--0.25

0.14
-0.50

-0.05

-0.75

Latitude -
) o
Longitude - o
(6]
MedHouseVal

Figure 4. Correlation heatmap of the California housing dataset
Nevertheless, correlation analysis is limited to detecting linear dependencies and does not
account for non-linear or interaction effects that may play a significant role in predictive modeling.
For this reason, subsequent sections focus on ML-based approaches combined with interpretability
techniques, which allow for a more complete assessment of feature relevance and their contribution
to the predictive process. As a first step, feature importance was evaluated, since, as noted earlier,
this measure is inherently embedded in the RF model (fig. 5).

05
o A
© 0.4
£
o 0.3
Q
S
202
£
€01
0.0
@ Q e e e o S)
S & & & R s &° &
W S S X & & X of
o S M o &
2
)]
+
€061 B
£
© 0.4
E
3
&
2 0.2
o
x
< 0.0- :
¢ o o
N & & R & N & o
& & C S
N4 > & S & & F N
he N3 ¥ ® » & &R

Figure 5. Feature importance in the California housing dataset: (A) Gini importance from the RF model, (B)
Permutation importance on the validation set

Ne 3/2025

Journal «Professional Bulletin. Information Technology and Security»

59

The scientific publishing house «Professional Bulletiny

Both Gini importance and permutation importance provide consistent results in identifying the
most relevant features. This similarity is expected, since both approaches capture the degree to which
a feature contributes to model performance. However, permutation importance is generally
considered more robust, as it directly quantifies the change in predictive accuracy when feature
information is disrupted, whereas Gini importance reflects the feature’s role in reducing node
impurity during tree construction.

To further investigate the marginal effect of individual predictors on the target variable, Partial
Dependence Plots were constructed. These plots illustrate the average change in the predicted
response as a given feature varies across its range, while all other features are marginalized (fig. 6).

.) k\ 2.8-

Y T N (O O 111 1 LT
2 3 4 5 6 7 34 36 38 2.0 2.5 3.0 3.5 4.0
MedInc Latitude AveOccup

Figure 6. Partial Dependence Plots for the top-3 features

In particular, the these for MedInc, Latitude, and AveOccup demonstrate the most pronounced
partial dependencies, consistent with their high importance in the model. Unlike feature importance
measures, which quantify global relevance, PDP provide a visual representation of the functional
form of the relationship between predictors and the target.

The SHAP analysis of the California Housing dataset highlights several key patterns in feature
importance. The most influential factor is median income (MedInc), which strongly dominates the
model’s predictions and was also consistently identified as the primary driver of house value in earlier
analyses. Geographical variables such as latitude and longitude also hold an important place,
reflecting regional disparities in the California housing market. The bar plot of SHAP values presents
the average magnitude of feature contributions across all predictions. This representation allows for
ranking variables by their overall importance, providing a global view of the most influential
predictors in the model (fig. 7).

N
=)}

w

o
N
N

N
»

N

o
N
N

Partial dependence
N N ¢
o w

Partial dependence

Partial dependence

[

e}
N
o

=
v

iy

[ee]

MedInc
Latitude
AveOccup
Longitude
HouseAge
AveRooms
AveBedrms

Population

""m‘

0.0 0.1 0.2 03 0.4 0.5 0.6
mean(|SHAP value|) (average impact on model output magnitude)

Figure 7. SHAP bar plot of mean absolute feature importance

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 60

The scientific publishing house «Professional Bulletiny

The ranking of features based on SHAP values closely aligns with both Gini and permutation
importance, which indicates methodological consistency across approaches. This reinforces that the
observed structure is not an artifact of a single metric, but a robust outcome of the model training
process. The dependence plot illustrates the relationship between SHAP values for the top-ranked
feature and its actual values. This visualization shows how the contribution of the feature changes
across its range, while also capturing interaction effects with other predictors, represented here by
color coding (fig. 8).

3 .
L]
g
O o, - 4.0
® L]
L]
2_
L 3.5
L
o
Yo S
= C 14 &)
c35 14
22 30%
as -3.0 ¢
<
< 4
[Vp}
O_
2.5
1
2.0
0 2 4 6 8 10 12 14

MedInc

Figure 8. SHAP dependence plot for MedInc with AveOccup as interaction feature

Summary plot reveals not only the relative importance of predictors but also the direction and
variability of their impact. It combines both global and local perspectives by displaying the
distribution of SHAP values for each feature across all samples. In this case, the dependence plot
demonstrates how SHAP values for MedInc vary across its range, indicating the feature’s contribution
to model predictions. The color gradient represents values of AveOccup, which allows the
identification of potential interaction effects between features. This visualization thus provides both
a univariate and a bivariate perspective, showing the main effect of MedInc while simultaneously
spotlighting its relationship with AveOccup (fig. 9).
High

MedInc
Latitude
AveOccup
Longitude

HouseAge

Feature value

AveRooms
AveBedrms

Population

Low

1 0 1 2 3
SHAP value (impact on model output)

Figure 9. SHAP summary plot

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 61

The scientific publishing house «Professional Bulletin»

Overall, the applied methods consistently highlighted a set of key predictors, such as median
income, geographic coordinates, and average occupancy, which were repeatedly identified as having
a substantial impact on the model output. This convergence across feature importance, permutation
analysis, partial dependence plots, and SHAP values confirms the robustness of the results. It should
be emphasized that the California housing dataset is a well-prepared and relatively clean benchmark
dataset, whereas in real-world applications data often exhibit noise, missing values, multicollinearity,
or complex nonlinear interactions. Such challenges typically complicate both model training and
subsequent interpretation. In practice, data scientists and ML-engineers are often required to carefully
choose appropriate methods or combine multiple approaches to effectively tackle these problems and
ensure reliable feature selection and interpretation.

Nevertheless, SHAP-based interpretation offers a more overarching view of the underlying
relationships, capturing both global patterns and local contributions of individual observations. For
specialists, this means an easier way to communicate results to stakeholders who may not be fully
familiar with the technical aspects of statistical modeling, ML algorithms, or the mathematics behind
feature importance measures, but who are primarily interested in understanding the drivers of the
observed outcomes and their practical implications.

Conclusion

Skilled feature selection remains an important component of ML, addressing vital problems of
redundancy, overfitting, and interpretability that arise in high-dimensional datasets. Different
approaches, including filter, wrapper, and embedded methods, provide complementary perspectives,
balancing accuracy, and computational cost. Beyond improving predictive performance, feature
selection contributes to the transparency and reliability of models, which are a major issue in domains
requiring explainability.

In this study, the process of feature selection and interpretation was shown to illustrate how
different methods underline the importance of individual predictors and how these insights can be
presented in practice. Modern interpretability techniques, such as SHAP, extend these benefits by
offering both global and local insights into model behavior. Together with tools like permutation
importance and partial dependence plots, they form a wide framework for understanding the role of
individual features in complex models. In practice, combining multiple techniques provides a more
nuanced and trustworthy view, supporting technical optimization and informed decision-making.

References

1. Volume of data/information created, captured, copied, and consumed worldwide from
2010 to 2023, with forecasts from 2024 to 2028 / Statista / URL:
https://www.statista.com/statistics/871513/worldwide-data-created/ (date of application:
10.08.2025).

2. Ali S., Abuhmed T., El-Sappagh S., Muhammad K., Alonso-Moral J.M., Confalonieri
R., Guidotti R., Del Ser J., Diaz-Rodriguez N., Herrera F. Explainable Artificial Intelligence (XAI):
What we know and what is left to attain Trustworthy Artificial Intelligence // Information fusion.
2023. Vol. 99. Ne 101805.

3. Cheng X. A Comprehensive Study of Feature Selection Techniques in Machine
Learning Models / SSRN / URL: https:/ssrn.com/abstract=5154947 (date of application:
14.08.2025).

4, Liyew C.M., Ferraris S., Di Nardo E., Meo R. A review of feature selection methods
for actual evapotranspiration prediction // Artificial Intelligence Review. 2025. Vol. 58(10). Ne 292.

5. Zhou H., Wang X., Zhu R. Feature selection based on mutual information with
correlation coefficient // Applied intelligence. 2022. Vol. 52(5). P. 5457-74.

6. Awad M., Fraihat S. Recursive feature elimination with cross-validation with decision
tree: Feature selection method for machine learning-based intrusion detection systems // Journal of
Sensor and Actuator Networks. 2023. Vol. 12(5). Ne 67.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 62

https://www.statista.com/statistics/871513/worldwide-data-created/
https://ssrn.com/abstract=5154947

The scientific publishing house «Professional Bulletin»

7. Jiménez-Cordero A., Morales J.M., Pineda S. A novel embedded min-max approach
for feature selection in nonlinear support vector machine classification // European Journal of
Operational Research. 2021. Vol. 293(1). P. 24-35.

8. Abdumalikov S., Kim J., Yoon Y. Performance Analysis and Improvement of Machine
Learning with Various Feature Selection Methods for EEG-Based Emotion Classification // Appl. Sci.
2024. Vol. 14. Ne 10511.

9. Aydogan B., Aytekin T. An in-depth analysis of KerneISHAP and SamplingSHAP:
assessing robustness, error, and efficiency: B. Aydogan, T. Aytekin // Knowledge and Information
Systems. 2025. P. 1-35.

10. Hasan M.M. Understanding model predictions: a comparative analysis of SHAP and
LIME on various ML algorithms // Journal of Scientific and Technological Research. 2023. Vol. 5(1).
P. 17-26.

11. Salih A.M., Raisi-Estabragh Z., Galazzo 1.B., Radeva P., Petersen S.E., Lekadir K.,
Menegaz G. A perspective on explainable artificial intelligence methods: SHAP and LIME //
Advanced Intelligent Systems. 2025. Vol. 7(1). Ne 2400304.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 63

The scientific publishing house «Professional Bulletin»

UDC 004.738.5:004.421.2

THE EVOLUTION OF WEB CRAWLING IN SEARCH ENGINES:
PERFORMANCE, SCHEDULING, AND URL PRIORITIZATION

Bogutskii A.
bachelor's degree, ITMO University (St. Petersburg, Russia)

IBOJIIOIIUA BEB-KPAYJIMHT' A B IIOUCKOBBIX CUCTEMAX:
HNPOU3BOAUTEJIBHOCTbD, IINTAHUPOBAHUE U IIPUOPUTE3ALIUA
URL

Boryukmuii A.Jl.
bakanasp, Hayuonanvuwiii ucciedosamensckutl ynugeepcumem UTMO
(Canxm-Ilemep6ype, Poccus)

Abstract

This article explores the evolution of web crawling systems used in modern search platforms.
It examines key stages in the development of crawler architectures, ranging from simple sequential
traversal to large-scale distributed systems. It analyzes various crawl scheduling methods, including
URL loading strategies, queuing mechanisms, content change prediction, and adherence to web
resource access constraints. Particular attention is given to URL prioritization as a critical factor
influencing index completeness, the timely inclusion of new pages, and the overall effectiveness of
search results. It also discusses machine learning—based approaches used to predict the importance of
web pages and to improve the efficiency of crawler resource allocation.

Keywords: web crawling, search engine, URL traversal, URL prioritization, crawl scheduling,
crawl strategies, resource allocation.

AHHOTAIUSA

B nanHOH cTaTbe wuCCHeayeTcs OHBOJIONMS CUCTEM BeO-KpayJHHra, MNPUMEHSEMBIX B
COBPEMEHHBIX IMOMCKOBBIX IIaTGopmax. PaccMaTpuBaroTcs KIIOUEBbIE TAIBI PA3BUTUS APXUTEKTYP
KpayJepoB, HauWHas OT HPOCTHIX IOCJIEAOBATENbHBIX QJITOPUTMOB 00X0Ja M 3aKaHYMBas
MaciITabupyeMbIMH paclpeeICHHBIMU CUCTEMaMHU. AHAIM3UPYIOTCS METOABI IUIAHHUPOBAHUS
00x0/1a, BKJIIOYAs CTpAaTEruu 3arpy3ku, ouepeanoctu URL, nporuo3upoBanre n3MEHEHUI KOHTEHTA
u coOirofieHue OrpaHMYEHUll, HakJIagbIBaeMbIX BeO-pecypcamu. Ocoboe BHUMaHUE YAEISAETCS
npuopute3aimn URL kak ¢akTopy, BIHMSIOIIEMY Ha IMOJHOTY HHICKCAIlMH, CBOCBPEMEHHOCTb
BKJIIOYEHHSI HOBBIX CTpaHUI] H 00myro 3((}eKTHBHOCT, TOUCKOBOW BbImaud. Taoke
paccMaTpUBAIOTCS TOAXOJbl HA OCHOBE MAIIMHHOTO OOyUYeHHsI, UCIIOIb3yEeMBbIe ISl MpeACcKa3aHHs
3HAYMMOCTHU CTPAHMII U TOBBIIICHUS 3 (HEKTUBHOCTH paclpeieieHusl pecypcoB Kpayepa.

KiroueBble ciioBa: BeO-kpaynuHT, morckoBas cucrema, o0xon URL, npuopureszanus URL,
TUTAHUPOBAHKE 3arpy3KH, CTpaTerun 00Xo/1a, pacpeIeieHUe PECypCoB.

Introduction

The creation of search engines is closely tied to approaches enabling the automated extraction
of information from the internet. Web crawlers constitute an important element within the approach
whose role is the retrieval, processing, and distribution of information to users. The constant growth
of web pages and the increased structural complexity of them constitute important problems,
emphasizing both the technological challenges as well as the research importance of web crawling.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 64

The scientific publishing house «Professional Bulletin»

Current crawlers operate under a wide range of constraints. The overall adoption of anti-bot
protections and the emergence of partially restricted web segments compel crawlers to make more
informed decisions about which resources to access. They must determine the optimal frequency of
revisits and allocate computational resources efficiently.

Even though there have been big improvements in the field, there are still many dilemmas that
need to be dealt with. These hurdles may consist of making page value prediction more accurate,
taking into account how web content changes over time, or even adjusting to how users behave. Also,
the strategies used during crawling have a direct effect on how information is stored in the search
index, which in turn affects how users can find certain topics and sources. The objective of this article
is to provide an examination of the evolution of web crawling systems, with a particular focus on
crawl scheduling and URL prioritization mechanisms.

Main part. The evolution of web crawling systems in search platforms

Contemporary search engines are seriously dependent on the quality and efficiency of their web
crawling systems. These are automated components responsible for discovering, retrieving, and
updating information from publicly accessible online sources. Web crawling refers to the systematic
traversal of the internet to collect content for subsequent indexing. The architecture and performance
of the tool directly affect the breadth of web coverage, freshness of crawled content and the relevance
of search results. This dependency is rooted in the constantly expanding scale of the internet, since it
continues to grow both in terms of the absolute number of websites and the relative complexity of

their structure (fig. 1).
1800

1600+
1400¢
1200¢

1000t

2016 2018 2020 2022 2024
Figure 1. Estimated number of websites worldwide, millions [1]

At the beginning of the internet, web crawlers were simple programs that explored the web
using basic graph search methods like depth-first and breadth-first search, with local state on a single
machine [2]. As the internet grew and the number of websites increased, it became impossible to
crawl all pages, so crawlers had to choose which URLSs to crawl and process. They used host statistics
and link statistics to achieve that.

Eventually, one crawler could not handle the task alone, even when crawling the best-ranked
URLs. Crawlers were sharded to process non-overlapping subsets of the internet. This not only helped
to store and process many more URLs but also made the process parallel. Each crawler cycle worked
like this: process outgoing links from previously crawled sites, send links to the right shards, pick the
best URLSs to download, then download them. Sharding by host made counting host statistics cheaper.
Later, very large websites appeared that were too big for one host. This led to a new stage where
multiple shards handled one host, making host statistics harder to calculate.

Over time, different types of crawlers were made — sharded-by-host batch crawlers with a task
scheduler like cron, real-time distributed systems with state storage on the same machine, and batch
crawlers using MapReduce for data preparation, processing, and aggregation. But the best solution
was using sharded event queues.

Modern web crawling systems are built on distributed, multi-component frameworks like
message queues and NoSQL storage. They are capable of handling billions of URLs and terabytes of
data daily. One major architectural advancement has been the adoption of asynchronous request
handling, which significantly reduces delays caused by network operations. With asynchronous I/O,

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 65

The scientific publishing house «Professional Bulletin»

crawlers can maintain tens of thousands of concurrent connections, optimizing system resource
utilization [3]. Additionally, modern web crawling pipelines incorporate multi-layered processing.
These architectural improvements also extend to scheduling mechanisms: a widely adopted design
pattern is the use of hierarchical URL queues, which enables scalable and modular control over crawl
execution.

An equally major component in the effectiveness of latest web crawling lies in the integration
between the crawling subsystem and other elements of the search engine infrastructure. Data derived
from user queries, click behavior or interaction patterns can inform and refine crawling strategies.
This approach elevates the priority of URLSs that are likely to hold greater value for users.

Web crawling faces a number of problems driven by both technical and structural changes in
the web ecosystem. One of the most pressing issues is scale. Millions of new pages are added daily,
but not all warrant inclusion in the index. This necessitates increasingly accurate estimation of content
utility even before fetching. The increasing use of dynamically generated content, which makes pages
fully accessible only after running JavaScript or interacting with client-side elements, adds to the
complexity. Modern crawlers are capable of executing JavaScript on well-prepared pages, which
allows them to retrieve accurate content. However, this is a resource-intensive operation and is
therefore applied selectively to URLs where JavaScript rendering is essential.

In summary, the progression of web crawling systems represents advancements in architecture
and data processing. It also means an ongoing adaptation to the changing digital environment. An
effective crawler must be scalable, intelligent, and capable of adapting in defiance of high content
volatility.

Crawl scheduling: load strategies and resource management

Once a distributed and scalable web crawling system is implemented, the process is faced with
the growing but no less critical challenge of effective crawl scheduling. Since the amount of
available web content can easily overwhelm even the most powerful of systems, it becomes necessary
to create careful strategies regarding which webpages are worthy of visiting, what time repeated
access should be made, and what efficient use of available infrastructure resources should be
achieved. Instead of having a rigid visitation schedule, modern crawl scheduling follows ranking
algorithms. For each URL, the system will first determine whether it meets predetermined inclusion
criteria. If so, there is a relevance score determined according to various metadata like freshness,
update frequency, and structure position. All these rankings guide the selection process, allowing the
system to give preference to high-value content while still maintaining control over the resource
consumption.

In practice, hierarchical URL queueing is the most commonly used strategy in modern web
crawlers. Under this approach, scheduling is managed through separate queues — typically organized
by domain, priority, or network segment — which enable flexible distribution of crawling tasks.
Importantly, metadata such as the timestamp of the last visit, estimated update frequency, structural
depth, and other attributes are not passed through queues along with URLs [4]. Instead, each URL is
associated with a persistent record stored separately, allowing the crawler to maintain historical
context and make informed decisions during subsequent scheduling iterations. Queues can be
organized by domain, priority level, or network segment, enabling flexible allocation and
redistribution of resources. Host-based partitioning of queues proves especially valuable in large
systems because it increases cache locality, reduces database connections and calls between services,
and allows for effective load balancing between machines. This architecture became the norm when
sites grew beyond the capacity of single-node crawlers to deal with them, and it became necessary to
assign certain queues or resources to high volume “host-monoliths” that generate a heavy amount of
URLs.

The scheduling process in web crawlers involves more than just deciding on the next URL to
crawl. It is more of a multifaceted problem that combines algorithmic techniques, infrastructural
constraints, signals of user intent, and other considerations involved in accessing web content. This
includes not only selecting which URLs to fetch next, but also deciding which outgoing links
extracted from previously downloaded pages should be followed and incorporated into the crawl

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 66

The scientific publishing house «Professional Bulletin»

frontier. Skillful scheduling secures that resources are fully utilized and it also helps to build a more
accurate and complete portrayal of the web in the index used by browsers.

Link normalization plays a pivotal role in this process, removing duplicates and syntactic
variations (e.g., query parameters like ?utm_source=) to prevent redundant fetching of the same
resource under different addresses. In practice, seemingly insignificant query parameters can generate
excessively long URLs — particularly on marketplaces and trading platforms, where multiple tracking
or filtering parameters are often appended without affecting the actual content. Normalization helps
eliminate such inflated variants, ensuring that crawlers do not repeatedly fetch semantically identical
pages. Complementary to this, content-level deduplication mechanisms are employed to avoid
indexing identical or near-identical pages [5].

Modern crawlers increasingly rely on predictive models to anticipate content changes. The
goal is to determine the optimal moment for re-crawling a page. Visiting too frequently results in
unnecessary resource expenditure, whereas infrequent revisits may lead to stale entries in the search
index. Probabilistic models are constructed using historical change data, resource type, site structure,
and external signals such as user activity or timestamp patterns.

An essential aspect of crawl scheduling involves strict adherence to externally imposed
constraints. These limits can whether be defined by website administrators or arising from technical
considerations. The standard robots.txt file specifies which URLs are permitted or not allowed for
crawling. If a website is crawled too intensively, it may block the crawler’s IP address or deny further
access to its content. To prevent this, modern crawlers typically implement internal default rate limits
for each site, which can be dynamically adjusted based on the site's responsiveness or trust level.

At the same time, the crawl-delay directive sets a minimum interval between successive
requests to the same server. Although it is not officially specified in RFC 9309, this directive is
nevertheless supported by many crawlers as a de facto standard.

Another important factor building crawl strategy is the presence of active defense mechanisms
designed to reduce automated traffic. Crawlers that fail to comply with expected behavioral norms
may be flagged as suspicious and subjected to blocking or CAPTCHA tests. In recent past, quite
sophisticated traffic filtering systems have developed. One notable example is Cloudflare’s Block Al
Bots feature, a single-click solution marketed to non-technical users. While its ease of use is evident,
the feature operates as a “black box”, offering little transparency into its internal logic. As a result,
even legitimate crawling agents may be denied access based on their technological signatures or user-
agent identifiers (fig. 2).

Test block Al:
ClaudeBot, anthropic-ai

2

Test Definite.ly Block Al OFF
Automated: 87.01%
HeadlessChrome, (®7. 2
Libwww-perl 20

Challenge Block Al ON

Inconclusive: could be

blocked
by definitely automated or Block AJ ON
Al (7.19%) (1.64%)

Figure 2. Diagram of decision outcomes for automated agents under the Cloudflare Al blocking
mechanism [6]

These factors illustrate that crawl scheduling is no longer a question of simply optimizing
internal resource usage — it also requires external sensitivity and responsiveness. Effective schedulers
now must factor in infrastructural scaleability, dynamic content patterns, compliance with evolving
access policies, and the presence of automatic defense mechanisms. As the web becomes even more

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 67

The scientific publishing house «Professional Bulletin»

intricate, large-scale crawling sustainably will depend not only on better algorithms, but on the ability
to navigate an increasingly regulated and adversarial terrain.

URL prioritization: impact on coverage and indexing efficiency

Since web crawling infrastructures suffer from inherent resource restrictions, it is necessary to
develop a method for sequencing pages to crawl and prioritizing URLs. Unlike crawl scheduling,
whose decision making is based basically on technical restrictions and queueing policies, the URL
prioritization only concerns examining the utility and the relevance of web pages.

One of the foundational approaches to prioritization is based on hyperlink popularity. URLs
that are linked to by a large number of external or authoritative sources are typically considered more
significant. Such metrics are used in algorithms like PageRank and inform not only search result
ranking but also the order in which URLs are crawled. The frequency of content updates is another
important factor in URL prioritisation. Pages that change often, such as the front pages of news sites,
update feeds, or product catalogues, should be crawled more often. To accomplish this, crawlers
maintain search logs, logs of content changes, and aggregated host data, which are then used to predict
the future update behavior of each resource.

In addition to both temporal and structural indicators, prioritization may also consider the
topical relevance of a page’s content. This has led to the spreading adoption of focused crawlers.
These are specialized systems designed to gather information within a predefined domain of interest.
A core component of focused crawling is the topic classifier, which evaluates the content of
downloaded pages in real time to determine whether to continue following outbound links (fig. 3).

lWeb pages

<y URLs _
] Download Threads Crawler Frontier
Repository

l

Topic Classifier

URLSs not visited
URLs extraction e

3

Figure 3. General flow of focused web crawler [7]

A website’s navigational structure often reflects the relative importance of its pages within the
domain, and this can serve as a basis for internal URL ranking. All of the aforementioned signals can
be aggregated into a composite priority score, which guides decisions on the order of initial
downloads as well as subsequent recrawling. The effectiveness of URL prioritization is not measured
directly. Rather, it manifests through secondary metrics that characterize the overall state and
behavior of the search system. These metrics can include index freshness or indexing latency (table

).

Table 1
URL prioritization efficiency metrics [8, 9]
Metric Description
Index freshness The degree to which indexed data reflects the current state of websites.

Effective prioritization helps timely update of frequently changing and
important pages.

Coverage The proportion of valuable content discovered within the limits of crawl
completeness capacity. Poor prioritization can lead to skipping useful pages in favor of
less important ones.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 68

The scientific publishing house «Professional Bulletin»

Metric Description
Indexing latency The delay between a page appearing on the web and being available in
search. Smart prioritization reduces this delay for high-priority content.
Search result | Although not directly dependent on crawling, search quality is strongly
effectiveness influenced by which pages are indexed and how often. Skipped or
outdated pages reduce relevance and user satisfaction.

To evaluate prioritization effectiveness, practitioners rely on experimental measurements, A/B
testing of competing strategies, and retrospective analysis of crawl logs and user interaction data.

Given the complexity of the modern web and the limitations of manually tuning prioritization
rules, machine learning (ML) is increasingly integrated into crawling systems, as previously noted.
These models are trained on historical crawl data, search query logs, and user behavior signals to
predict the likely importance of web pages. Feature sets for such models may include the structure
and length of the URL, semantic elements in the HTML (e.g., headers, meta tags), historical change
patterns, and similar attributes [10].

The models estimate the probability that a URL is valuable and assign priority scores
accordingly, which are then integrated into the global crawl queue. In some advanced
implementations, reinforcement learning techniques can be applied, as they allow the system to adjust
priorities dynamically based on downstream outcomes.

The integration of artificial intelligence can substantially increase the adaptability of crawling
systems and enable them to better accommodate the heterogeneity of the web. Through incorporation
of ML, crawlers can generalize beyond hand-crafted rules and adjust to emerging patterns in content
and linking behavior.

Conclusion

The evolution of web crawling, as a core technical component of search engine operation, is
representative of the overall effort to increase scalability and responsiveness in the rapidly growing
environment of the internet. Older systems, based on linear navigation techniques, have been replaced
by modern distributed and asynchronous systems, along with significant changes in the structure of
web crawlers. These developments have made it possible to achieve dramatic improvements in both
the breadth and pace of web crawler activities. However, with these advances in architecture, the
significance of algorithmic decision-making, particularly crawl scheduling and resource allocation,
has dramatically increased.

At the heart of modern-day web crawling techniques lies prioritization of URLs, a function that
identifies the importance, value, and timeliness of web page indexing. Predictive models and various
algorithms are increasingly being used to enhance indexing quality, incorporating behavioral signals
and structural signals. At the same time, the increasing use of server-side protection mechanisms in
the form of anti-bot systems and headless browser restrictions has added another layer of intricacy.
Crawl planning and prioritization have thus evolved into tasks that are not only computationally
demanding but also legally nuanced.

References

1. How Many Websites Are There in the World? / Siteefy // URL:
https://siteefy.com/how-many-websites-are-there/ (date of application: 10.08.2025).

2. Kuznetsov 1.A., Bobunov A.Yu., Bushuev S.A., Smirnov A.P., Pshichenko D.V.

Integration of Big Data into Recommendation Systems: Content Personalization Technologies //
Competitiveness in the Global World: Economics, Science, Technology. 2024. Ne 9. P. 56-61.

3. Garifullin R. Application of RxJS and NgRx for reactive programming in industrial
web development: methods for managing asynchronous data streams and application state //
International Journal of Professional Science. 2024. Ne 12-2. P. 42-47.

4. Mehyadin A.E., Abdulrahman L.M., Ahmed S.H., Qashi R. Distributed fundamentals
based conducting the web crawling approaches and types (focused, incremental, distributed, parallel,
hidden web, form focused and breadth first) crawlers // Journal of Smart Internet of Things. 2023.
Vol. 2022(1). P. 10-32.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 69

https://siteefy.com/how-many-websites-are-there/

The scientific publishing house «Professional Bulletin»

5. Viji D., Revathy S. Hash-Indexing Block-Based Deduplication Algorithm for
Reducing Storage in the Cloud // Comput. Syst. Sci. Eng. 2023. Vol. 46(1). P. 27-42.
6. Liu E., Luo E., Shan S., Voelker G.M., Zhao B.Y., Savage S. Somesite I Used to

Crawl: Awareness, Agency and Efficacy in Protecting Content Creators from Al Crawlers. In
Proceedings of the 2025 ACM Internet Measurement Conference (IMC °25). Madison, WI, USA.
ACM, New York, NY, USA, 22 p.

7. Neelakandan S., Arun A., Bhukya R.R., Hardas B.M., Kumar T.C., Ashok M. An
automated word embedding with parameter tuned model for web crawling // Intelligent Automation
& Soft Computing. 2022. Vol. 32(3). P. 1617-32.

8. Sethi S. An optimized crawling technique for maintaining fresh repositories //
Multimedia Tools and Applications. 2021. Vol. 80(7). P. 11049-77.
9. Rafsanjani A.S., Kamaruddin N.B., Behjati M., Aslam S., Sarfaraz A., Amphawan A.

Enhancing malicious URL detection: A novel framework leveraging priority coefficient and feature
evaluation // IEEE Access. 2024. Vol. 12. P. 85001-26.

10. Kunekar P., Nimbolkar A., Patil A., Lakde V., Wadile P., Rathod K. Product Review
Sentiment Analysis using Web Crawler and Machine Learning. // Grenze International Journal of
Engineering & Technology (GIJET). 2024. Vol.10(2). Ne 5479.

Ne 3/2025 Journal «Professional Bulletin. Information Technology and Security» 70

