

The scientific publishing house «Professional Bulletin»
Journal «Professional Bulletin. Information Technology and Security»

Professional Bulletin. Information Technology and Security is a professional scientific journal.

The publication in it is recommended to practitioners and researchers who seek to find solutions to

real-world problems and share their experiences with the professional community. The publication in

journal is suitable for those specialists who work and actively develop advanced IT solutions, such

as AI, blockchain, big data technologies and others.

The journal reviews all incoming materials. The review is double-blind, carried out by internal and

external reviewers of the publishing house. Articles are indexed in a variety of international scientific

databases, and access to the journal's database is open to any reader. Publication in the journal takes

place 4 times a year.

Publisher's website: https://www.professionalbulletinpublisher.com/

Issue № 3/2025

Brasov County, Romania

https://www.professionalbulletinpublisher.com/

Научное издательство «Профессиональный вестник»
Журнал «Профессиональный вестник. Информационные технологии и

безопасность»

Профессиональный вестник. Информационные технологии и безопасность –

профессиональное научное издание. Публикация в нем рекомендована практикам и

исследователям, которые стремятся найти решения для реальных задач и поделиться своим

опытом с профессиональным сообществом. Публикация в журнале подходит для тех

специалистов, кто работает и активно развивает передовые ИТ-решения, такие как технологии

ИИ, блокчейна, больших данных и другие.

Журнал рецензирует все входящие материалы. Рецензирование – двойное слепое,

осуществляется внутренними и внешними рецензентами издательства. Статьи индексируются

во множестве международных научных баз, доступ к базе данных журнала открыт для любого

читателя. Публикация журнала происходит 4 раза в год.

Сайт издательства: https://www.professionalbulletinpublisher.com/

Выпуск № 3/2025

Жудец Брашов, Румыния

https://www.professionalbulletinpublisher.com/

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 1

Contents

Drogunova Y.
THE IMPACT OF TESTING PRACTICES ON THE PERFORMANCE AND PROFITABILITY OF
E-COMMERCE PLATFORMS AMID GROWING DIGITAL CONSUMPTION 3

Garifullin R.
OPTIMIZATION OF FRONTEND APPLICATION PERFORMANCE: MODERN TECHNIQUES
AND TOOLS ... 10

Smirnov A.
COMPARATIVE ANALYSIS OF PERFORMANCE AND SCALABILITY OF SYNCHRONOUS
AND ASYNCHRONOUS INTERACTIONS IN MICROSERVICE ARCHITECTURE 15

Terletska K.
DYNAMIC TRAFFIC CONTROL MECHANISMS IN DISTRIBUTED SYSTEMS AS A MEANS
OF ENSURING ADAPTABILITY AND FAULT TOLERANCE IN DIGITAL INFRASTRUCTURE
 .. 21

Topalidi A.
INTEGRATION OF DEVOPS PRACTICES INTO DEVELOPMENT AND OPERATIONS
PROCESSES OF RUBY APPLICATIONS ... 28

Berezhnoy A.
ARCHITECTURAL DESIGN PATTERNS FOR HIGH-LOAD SYSTEMS: PRINCIPLES, TOOLS,
AND SCALABILITY CONSTRAINTS ... 33

Ulyanov V.
DIGITAL VISUALIZATION OF INVESTMENT ACTIVITY IN THE EOS (VAULTA)
BLOCKCHAIN ECOSYSTEM ... 40

Mukayev T.
PREDICTIVE ANALYTICS BASED ON MACHINE LEARNING AS A TOOL FOR COST
OPTIMIZATION IN OPERATIONS MANAGEMENT ... 47

Bondarenko K.
FEATURE SELECTION METHODS IN MACHINE LEARNING: FROM SIMPLE FILTERS TO
INTERPRETABILITY WITH SHAP .. 53

Bogutskii A.
THE EVOLUTION OF WEB CRAWLING IN SEARCH ENGINES: PERFORMANCE,
SCHEDULING, AND URL PRIORITIZATION .. 64

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 2

Содержание выпуска

Drogunova Y.
THE IMPACT OF TESTING PRACTICES ON THE PERFORMANCE AND PROFITABILITY OF
E-COMMERCE PLATFORMS AMID GROWING DIGITAL CONSUMPTION 3

Garifullin R.
OPTIMIZATION OF FRONTEND APPLICATION PERFORMANCE: MODERN TECHNIQUES
AND TOOLS ... 10

Smirnov A.
COMPARATIVE ANALYSIS OF PERFORMANCE AND SCALABILITY OF SYNCHRONOUS
AND ASYNCHRONOUS INTERACTIONS IN MICROSERVICE ARCHITECTURE 15

Terletska K.
DYNAMIC TRAFFIC CONTROL MECHANISMS IN DISTRIBUTED SYSTEMS AS A MEANS
OF ENSURING ADAPTABILITY AND FAULT TOLERANCE IN DIGITAL INFRASTRUCTURE
 .. 21

Topalidi A.
INTEGRATION OF DEVOPS PRACTICES INTO DEVELOPMENT AND OPERATIONS
PROCESSES OF RUBY APPLICATIONS ... 28

Berezhnoy A.
ARCHITECTURAL DESIGN PATTERNS FOR HIGH-LOAD SYSTEMS: PRINCIPLES, TOOLS,
AND SCALABILITY CONSTRAINTS ... 33

Ulyanov V.
DIGITAL VISUALIZATION OF INVESTMENT ACTIVITY IN THE EOS (VAULTA)
BLOCKCHAIN ECOSYSTEM ... 40

Mukayev T.
PREDICTIVE ANALYTICS BASED ON MACHINE LEARNING AS A TOOL FOR COST
OPTIMIZATION IN OPERATIONS MANAGEMENT ... 47

Bondarenko K.
FEATURE SELECTION METHODS IN MACHINE LEARNING: FROM SIMPLE FILTERS TO
INTERPRETABILITY WITH SHAP .. 53

Bogutskii A.
THE EVOLUTION OF WEB CRAWLING IN SEARCH ENGINES: PERFORMANCE,
SCHEDULING, AND URL PRIORITIZATION .. 64

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 3

UDC 004.415.5: 004.738.5:339.3

THE IMPACT OF TESTING PRACTICES ON THE PERFORMANCE AND
PROFITABILITY OF E-COMMERCE PLATFORMS AMID GROWING

DIGITAL CONSUMPTION

Drogunova Y.
bachelor’s degree, Dostoevsky Omsk state university (Omsk, Russia)

ВЛИЯНИЕ ПРАКТИК ТЕСТИРОВАНИЯ НА ПРОИЗВОДИТЕЛЬНОСТЬ

И ДОХОДНОСТЬ E-COMMERCE-ПЛАТФОРМ В УСЛОВИЯХ РОСТА
ЦИФРОВОГО ПОТРЕБЛЕНИЯ

Дрогунова Ю.И.

бакалавр, Омский государственный университет
имени Ф. М. Достоевского (Омск, Россия)

Abstract
The article examines modern software testing practices in e-commerce and their influence on

the performance and economic efficiency of digital platforms. It analyzes the role of quality assurance
integration into CI/CD workflows, the automation of user scenarios, and real-time monitoring. The
study highlights that the maturity of the testing infrastructure directly affects key metrics such as
time-to-market, system resilience under load, and ROI. The implementation of testing strategies under
conditions of growing digital consumption contributes to incident reduction, conversion rate
improvement, and customer retention. The article concludes that quality assurance should be viewed
as a strategic asset of a digital platform.

Keywords: testing, e-commerce, DevOps, automation, performance, ROI, resilience.

Аннотация
В статье рассматриваются современные практики тестирования программного

обеспечения в электронной коммерции и их влияние на производительность и экономическую
эффективность цифровых платформ. Анализируется роль интеграции гарантий качества в
процессы CI/CD, автоматизации пользовательских сценариев, а также мониторинга в режиме
реального времени. Подчеркивается, что зрелость тестовой инфраструктуры напрямую влияет
на такие метрики, как время вывода продукта на рынок, устойчивость систем при нагрузках и
ROI. Использование стратегий тестирования в условиях роста цифрового потребления
способствует снижению инцидентов, увеличению конверсии и удержанию клиентов. Сделан
вывод о необходимости рассматривать гарантии качества как стратегический актив цифровой
платформы.

Ключевые слова: тестирование, e-commerce, DevOps, автоматизация,

производительность, ROI, устойчивость.

Introduction
Rapid growth in digital consumption in recent years significantly impacted the dynamics of e-

commerce evolution. E-commerce websites have evolved from simple sales channels to sophisticated
digital ecosystems, and any malfunction of one component can result in instant financial loss, reduced
customer confidence, and a drop in major indicators like conversion rates, user retention, and repeat
purchases. In a competitive economy, customer expectations are not just limited to prices and product
offerings anymore – now they also encompass speedy page loading, interface stability, and error-free

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 4

user experiences. Since system performance and reliability have a great deal to do with how advanced
the quality assurance (QA) processes are, the test function is now increasingly being recognized as a
leading force for both digital stability and business achievement.

The aim of this article is to analyze the impact of modern software testing practices on the
performance and profitability of e-commerce platforms under conditions of increasing load and
shifting consumer behavior. Particular attention is given to how the integration of QA into DevOps
workflows, automation of user scenario testing, and real-time monitoring contribute to enhanced
reliability metrics, reduced incident recovery time, and an overall increase in return on investment
(ROI) from digital solutions.

Main part. Causal link between software quality and business performance in e-
commerce

In the field of e-commerce, software quality is not merely a technical attribute but an
economically significant factor that directly influences a platform’s financial performance. Errors in
user-facing scenarios – such as failures during checkout, delays in page transitions, or inconsistencies
in shopping cart behavior – disrupt the user journey, erode trust, and directly reduce the platform’s
ability to convert visitors into paying customers. Such defects, particularly when persistent, contribute
to increased user churn, lower customer satisfaction metrics, and a decline in customer lifetime value
(LTV). According to estimates by research agency Grand View Research, the global market for e-
commerce software exceeded $7,5 billion in 2024 (fig. 1).

Figure 1. Projected global e-commerce software market size, 2024-2028 [1]

Notably, the adverse effects of poor quality are rarely immediate or transient. As, over time,
technical debt accumulates through delayed refactoring or inadequate regression control, system
stability is compromised and scalability is hampered. The pervasive degradation impacts velocity of
feature releases and increases operating maintenance costs. At busy periods, say holiday seasons
when sales are high, if technical debt is not cleared, it can manifest as high response times or even
service shutdown (outage), both causing substantial revenue loss. Experts in the industry estimate
that one minute of unplanned downtime for an e-commerce giant can translate to tens of thousands
of lost sales.

It makes a direct cause-and-effect relationship between business performance and software
quality. Poor quality creates system failures, which degrade user experience and trigger negative
behavioral responses – reduced repeat business, higher support cost, and ultimately lower
profitability. QA therefore needs to be viewed not only as a technical reliability control but as a
strategic optimization control for important performance metrics (KPI) such as churn rate, customer
satisfaction, and ROI in e-commerce.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 5

Testing strategies for digital commerce
Developing effective QA methods for web stores includes paying close heed to platform

architectural complexity, the over-sensitivity of user scenarios to failure, and the necessity of offering
assurances of resilience under varying load conditions. Testing multiple levels – ranging from
component-level validation to real-time monitoring – enable the identification of vulnerabilities at
several stages of the system life cycle and assist in minimizing the effect of defects on core business
metrics (table 1).

Table 1
Comparative overview of testing strategies in e-commerce [2, 3]

Testing strategy Purpose Method Tools Outcome
End-to-end
testing of user
scenarios

Validate
business-critical
user flows.

Simulate user
actions.

Cypress,
Playwright,
Selenium.

Reduces failure
risk during
checkout and
transaction
processes.

Integration
testing of
microservices
and API

Identify errors in
inter-service
communication.

API requests and
contract
validation.

Postman,
RestAssured,
Pact.

Ensures stability
across distributed
components.

Performance
testing

Assess system
resilience under
high load.

Load simulation
and stress
scenarios.

JMeter, Gatling,
Locust.

Readiness for
peak traffic
periods.

Synthetic
monitoring

Monitor
availability and
speed along
predefined
routes.

Automated tests
at scheduled
intervals.

Pingdom,
Uptrends, New
Relic Synthetics.

Proactive
detection of
service
disruptions.

Real-user
monitoring
(RUM)

Analyze actual
user behavior in
real-time.

Client-side
telemetry
collection.

Google
Analytics,
Datadog RUM,
New Relic.

UX optimization
based on real-
world usage data.

The intersection of diverse testing strategies enables e-commerce sites to address QA from
multiple dimensions – functional correctness, stress testing, and on-the-fly user friendliness. Rather
than relying on one method, effective QA frameworks integrate automated scenario testing, robust
API tests, active infrastructure monitoring, and behavior-based analytics to ensure system resilience
and end-user satisfaction. This multi-layered approach not only reduces the likelihood of catastrophic
failure but also allows for continuous improvement in key business metrics such as conversion rate,
retention, and revenue stability in today's increasingly difficult digital environment.

Organizational and technological integration of QA into DevOps and product workflows
There are new commerce websites in a very dynamic environment – frequent releases, chaotic

changing of user requirements, and constant functional growth require QA practices strongly
ingrained in engineering and business processes. It requires shifting away from mainstream waterfall
testing towards a Shift-left model where quality control begins as early as the definition of
requirements and architectural design stages [4]. One of the QA effectiveness factors most crucial is
its integration within the CI/CD pipeline in a smooth fashion (fig. 2).

Figure 2. QA integration points in a typical CI/CD pipeline

Here, automated tests like unit, integration, and end-to-end tests are executed at every stage of
the build and deployment lifecycle, providing instant feedback on artifact quality. Defects are
identified and resolved early in the development cycle, and this reduces the overall cost of errors

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 6

appreciably. Continuous delivery is enabled by continuous monitoring of system performance and
stability, i.e., Mean Time to Recovery (MTTR), which helps make judgments not only on the number
of incidents but also response time and recovery.

More broadly, QA is increasingly evolving from an isolated technical function into a component
of the product hypothesis itself – actively participating in the formulation and validation of business
ideas [5]. Testing MVP (minimum viable products), conducting A/B experiments, and analyzing user
feedback enable teams to make evidence-based decisions, minimizing the risk of misaligned
priorities. In this context, quality is no longer viewed merely as a «post-development check»,but
becomes a fundamental part of the digital product’s value proposition. This logic is illustrated in
figure 3, which presents the Dev–Test–Business Feedback Loop – showing the integration of
hypothesis generation, development, testing, and real-time user feedback.

Figure 3. Dev – Test – Business feedback loop in product quality lifecycle

To assess the maturity of a QA infrastructure, two such critical measures are employed: Defect
Leakage Rate and Mean Time to Recovery (MTTR). The former measures the rate of defects that
escape detection during the test process and are subsequently discovered in production, serving as a
measure of poor test coverage or inefficiency in the testing process. The latter measures the pace of
returning a system to usual operation following a failure by a team, and thus indicates the operational
resilience of the company. Combined examination of these metrics provides not only an estimate of
the software quality per se, but also turns into a quantitative basis for the justification of investment
in test automation and additional QA development to business stakeholders. In the context of
increasing complexity and digital risk exposure in e-commerce systems, it is essential to align
technical quality metrics with broader models of financial and operational risk management. The use
of artificial intelligence in risk analysis offers practical approaches for anticipating failures and
optimizing decision-making in digital environments [6].

Qualitative impact of software quality on e-commerce platform profitability
High software quality exerts a broad economic impact on the performance of e-commerce

websites. It directly impacts – through diminished failure loss and improved conversion – and
indirectly impacts – by creating greater customer trust, increased purchase frequency, and reduced
support expenditures. In an economy with limited space for errors, investments in QA processes are
not perceived as costs anymore but rather as profitability and ROI drivers [7].

From an economics perspective, the underlying effect of quality arises from reducing the
incidence of transaction failure, particularly in mission-critical user flows such as registration, search,
checkout, and payment. Even minor deficiency in these places can disrupt the journey of the user and
lead to direct revenue loss. As per industry estimates, adding as little as 0,1% in availability for a site

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 7

with over 1 million daily hits can increase tens of thousands of dollars in additional monthly profits.
Increased test coverage and automated testing deliver reliable system response under varying load,
thereby rendering essential performance metrics such as conversion rate and AOV more stable.

One of the other noteworthy points is the UX optimization from QA-driven insights. RUM
helps determine behavioral patterns and systemic problems across geographies, devices, and access
channels. They are not only applied for defect resolution but also for determining product roadmap
priorities, which have direct implications on customer retention and maximizing LTV.

Also noteworthy is the effect that adult QA practices have in reducing the cost of operations.
Defect detection in the CI phase is 6-15 times less expensive than fixing the same errors at the time
of production. Furthermore, an uptime platform minimizes the load on technical support teams,
lowers SLA violations, and lowers escalation levels – resulting in a direct effect on improved business
margins. Indicators such as Defect Containment Effectiveness (DCE) and Cost of Quality (CoQ)
provide for a quantitative assessment of the effectiveness of QA investment in terms of financial
results.

Also QA contributes to profitability by accelerating time to market. Automated regression and
functional testing shorten release cycles, allowing for faster hypothesis validation and product
iteration. This is particularly critical for platforms relying on dynamic pricing, personalized
marketing, and rapid feature experimentation.

In summary, high-quality software is not merely a technical attribute – it is a strategic asset for
any e-commerce platform. The maturity of QA processes directly determines a business’s capacity to
adapt, scale, reduce losses, and generate sustainable revenue. Embedding quality metrics into
business analytics and executive reporting is becoming an essential practice for managing digital
product profitability.

Comparative impact of testing practices on key metrics of e-commerce platforms
Against the backdrop of the accelerating rhythm of digital consumption and rising user

expectations, e-commerce platforms are compelled to adopt diverse testing routines in order to deliver
technical robustness and business competitiveness. They vary in efficiency depending on the maturity
level, integration into product workflows, and suitability for the type of platform (e.g., B2C vs. B2B,
omnichannel complexity).

To support strategic planning of QA infrastructure, the impact of some testing practices on
performance and business metrics should be evaluated. The table 2 presents the comparative
evaluation of the impact of various testing strategies on three main dimensions: time-to-market
(TTM), system stability, and business performance (conversion rate, ROI, and other related metrics).

Table 2
Enhanced technical comparison of testing practices in e-commerce [8, 9]

Testing practice Time-to-market
impact

System stability
effect

Conversion /
ROI influence

Cost efficiency /
scalability

Manual
regression testing

Low (1–2
releases/month).

Moderate
(limited depth,
human error-
prone).

Low (few
business insights,
limited
scalability).

Low (labor-
intensive, hard to
scale).

Automated E2E
testing

Medium (weekly
deployments).

High (broad
coverage of key
user journeys).

Medium
(improves trust
and flow
continuity).

Medium-High
(requires setup,
pays off at scale).

CI/CD pipeline
QA integration

High (daily or
continuous
delivery).

Very High (real-
time validation,
shift-left model).

High (fewer
rollbacks, better
user stability).

Very High
(automated,
scalable,
developer-
aligned).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 8

Testing practice Time-to-market
impact

System stability
effect

Conversion /
ROI influence

Cost efficiency /
scalability

Performance /
load testing

Indirect (affects
stability, not
speed).

Very High
(prevents crashes
at scale).

Medium (better
UX during peak
events).

High (valuable
for large-scale or
seasonal
platforms).

Production
monitoring
(RUM +
Synthetic)

None (post-
release
diagnostics only).

Moderate
(detects live
issues, no
prevention).

High (exposes
real-world
bottlenecks).

Medium (scales
with user base,
analytics-
dependent).

A/B testing and
experimentation

Medium
(depends on
iteration speed).

Low (not focused
on infrastructure
faults).

Very High (data-
driven UX and
revenue
optimization).

Medium (ROI
tied to analytics
and product
maturity).

The evidence suggests that most strategically important practices are those that are built into
continuous delivery and feedback cycles – i.e., CI/CD test automation, end-to-end automation, and
A/B experimentation. These approaches shorten development cycles with improved system
predictability and driving quantifiable increases in user behavior and revenue results at the same time.

Conversely, stand-alone performance testing and manual testing are viable in resource-
constrained or legacy systems but do not scale well with increasing release frequency and traffic.
Production monitoring, although not strictly a development tool, offers real-world problem detection
in a timely fashion and enables retention through the ability to mitigate UX problems more quickly.

Lastly, testing strategies for e-commerce will need to be tailored to the platform's operating
model, level of maturity, and its resource constraints. This comparison model can be used as a QA
investment prioritization tool and as a basis for leveraging engineering and business teams'
participation in shared performance and profitability goals.

Conclusion
The research determines that long-standing and systematically incorporated testing methods

exert both direct and indirect influences on the functionality and profitability of e-commerce websites
under pressures of heightened online consumption. Implementation of automated testing, adding QA
to CI/CD pipelines, and monitoring and experimentation practices (e.g., A/B testing, RUM) result in
more technical resilience, reduced time-to-market, and improved core business metrics such as
conversion rate, average order value, and customer retention. QA becomes a strategic component of
digital risk management in high-speed release environments with varying load.

Moreover, the study finds that effectiveness of capital and operating expenses varies
significantly based on testing practices chosen. Fragmented or manual practices are low in scalability
and bad at relating with financial performance whereas automated and metrics-based ones allow
higher ROI and SLA incidents reduction. Thus, QA must be regarded as not only a technological
shield, but also as an investment tool of immediate value to the financial sustainability of online
platforms. Valuing QA maturity accordingly into digital planning is thus a critical factor for
maintaining long-term competitiveness within e-commerce.

References
1. E-commerce Software Market Size & Trends / Grand View Research // URL:

https://www.grandviewresearch.com/industry-analysis/e-commerce-software-market (data of
application: 13.08.2025).

2. Abhilash V., Venkat S.H., Nishal S., Rajagopal S.M., Panda N. E-commerce
evolution: Unleashing the potential of serverless microservices // 2024 15th International Conference
on Computing Communication and Networking Technologies (ICCCNT). IEEE. 2024. P. 1-8.

3. Sidorov D., Kuznetcov I., Dudak A. Asynchronous programming for improving web
application performance // ISJ Theoretical & Applied Science. 2024. Vol. 138. № 10. P. 197-201.

https://www.grandviewresearch.com/industry-analysis/e-commerce-software-market

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 9

4. Lan Q., Kaul A., Pattanaik N.K.D., Pattanayak P., Pandurangan V. Securing
Applications of Large Language Models: A Shift-Left Approach // 2024 IEEE International
Conference on Electro Information Technology (eIT). IEEE. 2024. P. 1-2.

5. Safarli N.Z. Artificial intelligence in financial risk analysis: theory and practice //
Professional Bulletin: Economics and Management. 2025. № 1/2025. P. 46-53.

6. Mirjat N.A. Quality Assurance in Devops Environments: Strategies, Tools, And Best
Practices // Multidisciplinary Science Journal. 2024.Vol. 1. № 01. P. 60-65.

7. Jin L., Chen L. Exploring the impact of computer applications on cross-border e-
commerce performance // IEEE Access. 2024. Vol. 12. P. 74861-74871.

8. Larsen N., Stallrich J., Sengupta S., Deng A., Kohavi R., Stevens N.T. Statistical
challenges in online controlled experiments: A review of a/b testing methodology // The American
Statistician. 2024. Vol. 78. № 2. P. 135-149.

9. Bolgov S. Automation of business processes using integration platforms and backend
technologies // International Research Journal of Modernization in Engineering Technology and
Science. 2024. Vol. 6(12). P. 3847-3851.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 10

UDC 004.4

OPTIMIZATION OF FRONTEND APPLICATION PERFORMANCE:
MODERN TECHNIQUES AND TOOLS

Garifullin R.

bachelor’s degree, Saint Petersburg electrotechnical university
«LETI» (Saint Petersburg, Russia)

ОПТИМИЗАЦИЯ ПРОИЗВОДИТЕЛЬНОСТИ ФРОНТЕНД-

ПРИЛОЖЕНИЙ: СОВРЕМЕННЫЕ ТЕХНИКИ И ИНСТРУМЕНТЫ

Гарифуллин Р.Ш.
бакалавр, Санкт-Петербургский государственный электротехнический

университет «ЛЭТИ» им. В. И. Ульянова (Ленина)
(Санкт-Петербург, Россия)

Abstract
This study examines how modern performance optimization techniques influence the efficiency

of frontend applications. Key techniques such as code splitting, lazy loading, tree shaking, resources
minimization and compression, use of modern bundlers (Webpack, Vite), and use of Content Delivery
Networks (CDN) are examined. The influence of these methods on key performance metrics is
analyzed. Additionally, research and real-world case studies are considered to illustrate the effects of
both optimization strategies and loading delays on user behaviour, engagement levels, and business
indicators.

Keywords: performance optimization, frontend applications, code splitting, lazy loading, tree

shaking, Content Delivery Network (CDN).

Аннотация
В данной статье исследуется влияние современных методов оптимизации

производительности на эффективность работы фронтенд-приложений. Рассматриваются
ключевые техники, такие как разделение кода, ленивая загрузка, метод устранения мертвого
кода, минимизация и сжатие ресурсов, использование современных сборщиков (Webpack,
Vite) и внедрение инфраструктуры Content Delivery Network (CDN). Изучается роль этих
методов на основные метрики производительности. Рассматриваются исследования и
практические примеры, демонстрирующие влияние как стратегий оптимизации, так и
задержек в загрузке на поведение пользователей, уровень вовлеченности и бизнес-показатели.

Ключевые слова: оптимизация производительности, фронтенд-приложения,

разделение кода, ленивая загрузка, метод устранения мертвого кода, Content Delivery Network
(CDN).

Introduction
Complexity of web applications has grown exponentially, along with their resource demands.

Fast load times and usability are expected by users, and search engines like Google include
performance measures in site rank algorithms. Frontend application performance is most important
to user experience, conversion, and a whole host of key performance measures; therefore,
performance must be optimized.

Recent advancements in frontend tooling and methodology have enabled sophisticated
techniques in load performance optimization, data transfer minimization, and interface
responsiveness. Code splitting, lazy loading, tree shaking, and the use of modern-day bundlers such

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 11

as Webpack and Vite have been the most successful techniques in practice. With proper use, such
techniques have high potential for loading duration reductions, consumption minimization, and
enhancing web application usability. This purpose of this article is to examine contemporary methods
for optimizing frontend performance.

Main part. Theoretical foundations of frontend performance optimization
Web application performance is a good indicator of their success and has direct implications

for user experience, engagement, and achievement. Taming load time facilitates seamless interaction,
whereas latency invites frustration and diminished retention. As more users anticipate instant access
to digital content, frontend performance optimization has become essential to maintain
competitiveness and achieve high usability [1].

Poor performance also affects search engine optimization (SEO). Google introduced Core Web
Vitals in 2021, which is a set of metrics to use when measuring the user experience, with a strong
emphasis on loading speed. Faster web apps rank better in search, gaining more organic traffic and
visibility. Moreover, slow interfaces negatively affect the accessibility of web applications. Users
with slow internet connections or outdated devices encounter difficulties when loading heavy pages,
making applications less inclusive. This issue is relevant for global services operating in regions with
unstable internet connectivity.

To objectively assess web application performance, key metrics have been developed to
measure various aspects of user experience (table 1).

Table 1
Web performance metrics [2, 3]

Metric Description Recommended threshold
Time to First Byte
(TTFB)

Time taken for the browser to receive the
first byte of the response from the server.

< 200 ms

First Contentful Paint
(FCP)

Time taken to render the first visible
element (text, image) on the screen.

< 1.8 s

Largest Contentful Paint
(LCP)

Time taken to load the largest visible
content (image, text block) on the page.

< 2.5 s

Cumulative Layout
Shift (CLS)

Measures visual stability by calculating
unexpected layout shifts during page load.

< 0.1

Time to Interactive
(TTI)

Time taken until the page becomes fully
interactive (when users can interact
without delay).

< 5 s

Interaction to Next Paint
(INP)

Evaluates the delay between a user
interaction (click, keypress) and the next
visible update on the page.

< 200 ms

Optimized websites offer real-time loading and smooth interface performance, which reduce
the bounce rate and improve session duration. Users expect a site to load in three seconds, and each
additional second of lag significantly increases the page abandonment rate. A Google research found
that slowing down the load time of mobile pages from one to five seconds boosts the likelihood of
bounce by 90% (fig. 1).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 12

Figure 1. Increase in bounce probability based on page load time, % [4]

Performance is also a key factor in mobile applications and Progressive Web Apps (PWA).
A significant proportion of visitors access websites through mobile devices, many of which have
recurring low network bandwidths compared with desktops. Optimising web applications will
become increasingly important for enhancing smartphone usability, particularly in high volumes of
mobile usage regions.

There have been a variety of specialist tools developed to evaluate and tune web application
performance, with evaluation facilitated through automation and performance constraint
identification. Google Lighthouse is a test tool that audits the performance, SEO, and accessibility
of web applications and gives detailed optimization recommendations. WebPageTest is a tester that
conducts page load speed tests in real-world scenarios on various devices, network types, and
geographies. Chrome DevTools is a group of developer tools that come pre-installed with the
Chrome browser and allow one to analyze performance metrics, resource loading, and blocking
operations. Core Web Vitals Report, in Google Search Console, provides one with a view of Core
Web Vitals metrics of website pages. PageSpeed Insights is another tool at Google that tests page
speed and gives suggestions to enhance it.

Using the above tools, developers are able to perform unbiassed frontend application
performance assessments and make evidence-based optimisation decisions. Regular measurement of
key performance indicators identifies performance hotspots, optimises optimisation methods based
on real user profiles, and provides consistent application response under increasing traffic and
computational demands.

Modern techniques and tools for optimization
With the growing complexity of web applications comes a larger volume of data to be

transferred, which has an unfavorable impact on loading time and performance. Heavy JavaScript
bundles, resource-intensive resources, and redundant code only add to the load carried by the browser,
further degrading the user experience. To address these issues, developers employ all manner of
optimizations intended to reduce page load latency, remove unnecessary memory usage, and enhance
interface responsiveness [5].

One of the most critical frontend application optimization techniques is code splitting, which
allows a portion of an application to be loaded only when needed at a particular time. This minimizes
data transferred and page loads. Code splitting is done through dynamic imports (import()), and thus
modules are loaded on demand. Well-known frameworks such as React, Vue, and Angular have
native support for dynamic loading. Dynamic loading allows the browser to load components or pages
on demand rather than loading the entire application code at boot. Code splitting comes in handy for
Multi-Page Applications (MPA) and Single-Page Applications (SPA) with massive amounts of
functionality where a significant amount of functionality may not be utilized during the first load.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 13

Lazy loading is implemented for code and also for media resources such as images and videos
to reduce the first-load time and enhance the performance overall. Lazy loading would only load non-
critical resources when they are needed, thereby lessening the data loaded at page startup, which is
extremely beneficial for media-rich sites. In HTML5, deferred image loading could be implemented
through the use of the attribute loading="lazy":

Lazy loading significantly reduces the initial data transferred and improves key performance

metrics such as LCP [6]. For videos and frames, lazy loading is possible by introducing the
loading="lazy" attribute or implementing JavaScript-based intersection observers to control when
resources are loaded. This technique can be especially handy for long-scrolling pages, news websites,
blogs, and e-commerce websites, where numerous images or videos may not be visible right after
page load.

Tree shaking is a method that eliminates dead code at build time. The method works
exceptionally well with ES6 modules (ECMAScript 2015) since they allow static dependency
analysis, which makes it easy for bundlers to identify and remove unused exports. Tree shaking is
natively supported by new build tools such as Webpack, Rollup, and Esbuild. In Webpack, for
example, tree shaking is automatically enabled in production mode but turned off in development
mode for the sake of debugging. Also, tree shaking can be further improved by configuring the
sideEffects field in the package.json file so that files with no side effects are tree shaken in an optimal
way. By removing dead code, this mechanism significantly reduces the final bundle size, which
enhances loading performance and speed, especially in projects that have enormous external libraries.

A Content Delivery Network (CDN) is a server network geographically dispersed with the
aim of serving static files from closer geographic locations to users in a bid to reduce latency and
enhance web application reliability. A cache and distribution of assets such as images, stylesheets,
JavaScript files, and even entire HTML pages at multiple edge locations reduces content fetch time
significantly. This approach minimizes reliance on a single origin server, sharing traffic loads and
increasing tolerance towards sudden peaks in high traffic or DDoS attacks. Additionally, most modern
CDNs are supplemented with compression techniques including Brotli and Gzip, adaptive image
compression, and HTTP/3, minimizing load time even more.

Minification and file compression make data transmitted smaller, thus faster page loading
speed and performance. JavaScript and CSS minification is elimination of unwanted whitespace,
comments, and unused code, which is easily accomplished with plugins such as Terser for JavaScript
and CSSNano for CSS. Besides shortening the load of the script, the minification decreases the
payload overall, which enhances the frontend performance and server response time. Gzip and Brotli
compression algorithms also improve performance through HTTP response size compression prior to
transmission to the client. Brotli provides higher compression ratios for text content like HTML, CSS,
and JavaScript, with bandwidth efficiency being significantly increased.

Frontend performance is one of the strongest drivers of user experience, engagement, and
business success for web applications. With first-order performance metrics knowledge and a set of
specialized analysis tools at their disposal, developers can monitor bottlenecks and tune specifically.
Through continuous monitoring and optimization of frontend performance, companies can improve
load speed, accessibility, and competitiveness in a more demanding online marketplace.

Analysis of performance optimization and its impact on user engagement in companies
Performance optimization is a critical element in user action and business achievement. World

case studies and research findings illustrate how anticipatory optimizations and performance lags
affect user behavior, conversion rates, and system performance.

Netflix conducted a performance optimization initiative that was focused on making the
unauthenticated user loading experience better [7]. The primary aim was to optimize TTI, which is
an essential metric that tracks how long it takes a page to be interactive. For this purpose, the
development team implemented prerendering and critical rendering path optimization. These
improvements resulted in faster initial content presentation as well as generally improved perceived
loading speed.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 14

Research by Google further confirms that even minor delays in page loading can significantly
impact user behaviour [8]. In an experiment, the company actually delayed search result loading times
by 100-400 milliseconds to see how user behavior altered. The results were that 100 milliseconds of
delay dropped search behavior by 0,2% during the first six weeks and 400 milliseconds dropped
search behavior by 0,6%.

Besides, the adverse impact became more potent over time: users who were repeatedly faced
with prolonged page loads kept reducing use over time, and even after performance was restored,
they failed to return to levels of engagement before. Surprisingly, after six weeks of exposure to a
400-millisecond delay, users kept conducting 0,21% fewer searches during the following five weeks
after the experiment ended.

A 2020 Deloitte study further underscores the significance of load speed optimization [9]. It
demonstrated that improving mobile page loads by just 0,1 seconds had a return of 8,4% increase in
conversion rate in retail and 10,1% in travel. Mean order value also increased by 9,2% in retail and
1,9% in travel, showing the real financial benefit of performance optimization. These findings
confirm the key role of frontend performance improvement to efficiency, user engagement, and
overall profitability in web applications.

Conclusion
Optimization of frontend application performance is a crucial aspect of rendering a user's

experience fast, business metrics improved, and the overall performance of web applications.
Emerging mechanisms such as code splitting, tree shaking, lazy loading, and employing advanced
bundlers and CDN greatly reduce page load times and render the interface more responsive. Empirical
evidence from top tech companies shows that performance investments carry a significant weight
regarding high conversion rates, low bounce rates, and overall improvement in terms of user
experiences. As web app usability and speed are in high demand, developers committed to offering
high-quality digital products must ensure continuous improvements in terms of optimization
techniques.

References
1. Sidorov D., Kuznetcov I., Dudak A. Asynchronous programming for improving web

application performance // ISJ Theoretical & Applied Science. 2024. Vol. 138. № 10. P. 197-201.
2. Wehner N., Amir M., Seufert M., Schatz R., A vital improvement? Relating Google's

core web vitals to actual web QoE // 2022 14th international conference on quality of multimedia
experience (QoMEX). IEEE. 2022. P. 1-6.

3. Dobbala M.K., Lingolu M.S.S. Web Performance Tooling and the Importance of Web
Vitals // Journal of Technological Innovations. 2022. Vol. 3. № 3.

4. Find Out How You Stack Up to New Industry Benchmarks for Mobile Page Speed /
GoogleAPIs / URL: https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-
benchmarks.pdf (date of application: 24.08.2025).

5. Dudak A. Object-oriented design patterns in front-end development // International
independent scientific journal. 2024. № 66. P. 67-70.

6. Bâra R.M., Boiangiu C.A., Tudose C. Analysing the performance impacts of lazy
loading in web applications // Journal of Information Systems & Operations Management. 2024. Vol.
18. № 1. P. 1-15.

7. Ahmed S., Aziz N.A. Impact of ai on customer experience in video streaming services:
A focus on personalization and trust // International Journal of Human. Computer Interaction. 2024.
P. 1-20.

8. Speed Matters / Google Research // URL: https://research.google/blog/speed-matters/
(date of application: 24.08.2025).

9. Milliseconds Make Millions / Deloitte // URL:
https://www.deloitte.com/ie/en/services/consulting/research/milliseconds-make-millions.html (date
of application: 24.08.2025).

https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://research.google/blog/speed-matters/
https://www.deloitte.com/ie/en/services/consulting/research/milliseconds-make-millions.html

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 15

UDC 004.4

COMPARATIVE ANALYSIS OF PERFORMANCE AND SCALABILITY OF
SYNCHRONOUS AND ASYNCHRONOUS INTERACTIONS IN

MICROSERVICE ARCHITECTURE

Smirnov A.
master’s degree, Perm national research polytechnic university

(Perm, Russia)

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОИЗВОДИТЕЛЬНОСТИ И
МАСШТАБИРУЕМОСТИ СИНХРОННЫХ И АСИНХРОННЫХ
ВЗАИМОДЕЙСТВИЙ В МИКРОСЕРВИСНОЙ АРХИТЕКТУРЕ

Смирнов А.В.

магистр, Пермский национальный исследовательский
политехнический университет (Пермь, Россия)

Abstract
This paper explores the choice between synchronous and asynchronous interaction models in

microservice architecture, focusing on their impact on system performance and scalability. Key
characteristics such as latency, throughput, and scalability under varying loads are discussed. The
interaction models based on REST API and event-driven approaches are compared, emphasizing their
advantages and disadvantages in the context of high-load distributed systems. The analysis presented
aids in selecting the optimal interaction model based on system-specific requirements, such as data
consistency, fault tolerance, and processing efficiency.

Keywords: microservice architecture, synchronous interactions, asynchronous interactions,

performance, scalability, REST API.

Аннотация
В статье проводится сравнение между синхронными и асинхронными моделями

взаимодействия в микросервисной архитектуре, акцентируется внимание на их влиянии на
производительность и масштабируемость систем. Описываются ключевые характеристики
этих подходов, такие как механизмы задержек, пропускная способность и масштабируемость
при различных нагрузках. Сравниваются модели взаимодействия, основанные на REST API и
event-driven подходах, с акцентом на их преимущества и недостатки в контексте
высоконагруженных распределенных систем. Представленный анализ помогает в выборе
оптимальной модели взаимодействия в зависимости от специфики требований к системе,
таких как согласованность данных, отказоустойчивость и эффективность обработки.

Ключевые слова: микросервисная архитектура, синхронные взаимодействия,

асинхронные взаимодействия, производительность, масштабируемость, REST API.

Introduction
New information systems, which are created on the basis of the microservice architecture, must

select the most suitable mechanism of interaction between services. There are various versions of
interaction: synchronous (for example, REST) and asynchronous (according to the event exchange
principle). They are both pros and cons in terms of system performance, scalability, data consistency,
and load tolerance. One of the most significant issues is how to balance the trade between

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 16

predictability and strong consistency on synchronous calls against flexibility at potentially higher
complexity using asynchronous interaction.

The relevance of this research stems from rising needs for dealing with large amounts of
information and high availability in today's distributed systems. The proliferation of applications with
microservices orientation calls for the understanding of how diverse interaction models affect delay
on messages upon sending, data consistency, and resource utilization.

The purpose of this research is to make a comparative analysis of scalability and performance
of two interaction models of microservices. For these purposes, theoretical ideas of their work are
used, primary performance indicators are analyzed, and the impact of choosing an interaction model
on data consistency is researched. The research is carried out with the help of analysis of available
scientific literature, study of theoretical interaction models and their assessment based on most
significant characteristics.

Main part. Theoretical basis of interactions in microservice architecture
Microservice architecture is a software development style where a system is broken down into

tiny independent services that exchange information with one another using network protocols. The
interaction mechanism between services significantly influences the system's performance, data
consistency, and scalability. These come in two broad forms: synchronous interaction, involving a
direct request and response, and asynchronous interaction, involving sending and receiving messages
or events and no feedback being provided immediately.

The synchronous approach, predominantly used via the REST API (Representational State
Transfer), offers tight coupling among services. In the process, the client sends a request to the server
and then waits for the reply before further moving ahead to execute its logic. The mechanism is simple
to implement in deterministic processes as it offers predictability to operations and simplifies error
management (fig. 1).

Figure 1. REST API framework [1]

However, extensive reliance among services creates greater delays as the weight increases. The
greater the number of calls placed, the higher the number of REST requests that will form «cascades
of delays» since every request will continue to hinder operation until it is received. Bottlenecks and
performance are realized under high traffic densities in a system.

The asynchronous approach, however, relies on sending messages between services without the
anticipation of a prompt response. This is achieved using message brokers such as Apache Kafka,
RabbitMQ, or AWS SQS. In asynchronous systems, the sender sends the message to a queue where
it is picked up by the receiver for processing. This method removes the dependency of services on
each other and makes them fault tolerant, as services will keep functioning regardless of whatever
state other parts are in (fig. 2).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 17

Figure 2. Asynchronous approach framework [2]

However, this approach makes it difficult to ensure strict consistency of data, as the operation
can stop at a random point. Distributed systems employ eventual consistency approaches where
consistency is achieved through replication and repeated execution of operations on failure.

Another factor while choosing an interaction model is the scalability issue. Horizontal scaling
with additional service replicas and load balancing in synchronous systems means additional
management costs of extra infrastructure. However, in asynchronous systems, by virtue of the
message queues, the load gets dynamically distributed with flexible reclamation of resources across
nodes [3].

Thus, synchronous or asynchronous interaction is selected based on the type of system and its
performance requirements. Synchronous is appropriate for transactional operations with high
consistency requirements, while the asynchronous method is better suited for highly loaded
distributed systems where reducing interdependence between services is important.

Performance and scalability metrics
Measuring the efficiency of interactions in a microservice system is based on analyzing key

indicators that reflect query processing time, the use of computing capacities, and the system's
adaptability to changing workloads. Among them, response time, bandwidth, and infrastructure
costs are particularly significant. The choice between synchronous and asynchronous interaction
significantly affects these parameters, which is why it is necessary to study them in detail.

One of the more important performance characteristics is response time, or latency, which
measures how long it takes from the time a request is sent to the time a response is received. Response
time in synchronous systems is directly proportional to the number of services involved in the call
chain. For example, in sequential REST communication, where one request takes 100 ms and five
services must complete the operation, the overall delay can reach 500 ms, without taking network
overhead into account [4]. In asynchronous systems, delays can be distributed over time, reducing
the load on individual components, but in scenarios with strict consistency requirements, this can lead
to an increase in overall latency.

Another important metric is throughput – the number of requests processed in a time unit.
Knowledge of this metric in synchronous systems is limited by server capacity and the number of
simultaneous connections, while in asynchronous architectures it can be enhanced by scalable
message queues. For example, the use of Apache Kafka allows processing tens of thousands of
messages per second with effective load balancing [5]. However, high throughput does not always
imply low latency and requires careful consideration of usage scenarios.

Scalability is significantly affected by the way the computing resources are used. In
synchronous architectures, each blocked thread consumes RAM and CPU cycles, which lead to
resource exhaustion under high load. Asynchronous models use non-blocking processing and
distributed queues to use resources more effectively, with less memory consumption under the same
load. This is at the expense of extra state negotiation mechanisms and message relaying in case of

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 18

failures, which may make the system more complex. However, systems designed to scale usually
have these mechanisms in place anyway.

Comparative analysis of REST and event-driven interactions
The selection of REST interaction or event-driven communication within a microservice

architecture depends on differences in the request processing mechanisms, delay of data transfer, fault
tolerance, and scalability. Each of them has its advantages and disadvantages that should be taken
into account during high-load system design.

REST adopts a synchronous pattern of interaction, in which the client sends an HTTP request
and then waits for the server's response. This is more convenient to deal with errors and maintain the
system under control, as every call means real-time data processing. But REST in large distributed
systems is plagued by «cascading dependencies», where one service downtime can lead to
unavailability of a series of connected components. For example, if the auth service does not respond,
it blocks access to all dependent services.

Unlike REST, event-driven systems utilize asynchronous message-based communication via
brokers such as Apache Kafka or RabbitMQ. Here, services publish events that can be handled by
one or more subscribers. This increases scalability and fault tolerance because services are not
dependent on other services being ready immediately. The complexity of implementation is greater
as coordination of the state between different components of the system needs to be done.

Also, in server and client-side applications, RxJS (Reactive Extensions for JavaScript) and
NgRx (Angular Reactive Extensions) enable efficient data management and event flow, and thus they
are useful tools in event-driven systems. RxJS enables you to create reactive data flows and manage
asynchronous computation, and NgRx implements the Redux pattern in Angular applications so that
state is easier to manage in an async environment. These tools demonstrate the reactive programming
principles, being fault-tolerant and scalable without blocking the threads. They are especially useful
with message-driven architecture, where effective system state management and real-time event
processing are required [6].

From a performance perspective, REST-based systems can have less latency with minimal
services since the response to the request is immediately available. With higher load, however, REST
begins to suffer: an increase in the number of concurrent connections leads to blocking threads and
response time. In event-driven architecture, the load is dynamically distributed, and asynchronous
processing allows you to enhance the system throughput. For example, in research, transitioning to
the event-driven model lowered the utilization of processor resources by 77,5% and lowered average
response delay with large load [7].

The second distinction lies in data consistency mechanisms. Within REST-based systems,
transactions are usually performed in real time with strict consistency. Event-driven systems usually
apply the event consistency model, in which updates are broadcasted with a delay. This can cause
temporary inconsistency in data between services, which is of critical importance for banking systems
or online shopping websites. Thus, therefore, the REST style is still favored for tightly consistent and
integrated systems, but event-driven systems are more scalable and fault-resistant under high loads.

Choosing the optimal approach depending on the usage scenario
The optimum choice between synchronous REST communication and asynchronous event-

driven communication depends on the system's particularities, performance requirements, data
consistency, and fault tolerance. In different situations, one of these approaches may be preferable,
providing the best tradeoff between implementation ease and operational efficiency (table 1).

Table 1
Comparison of approaches based on use case scenarios

Scenario REST (synchronous
communication)

Event-Driven (asynchronous
communication)

Transactional
systems

Suitable for systems where strict
data consistency and integrity are
critical (e.g., banking applications).

Can be applied in scenarios where
consistency can be temporarily
compromised, but efficiency is still
required.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 19

Scenario REST (synchronous
communication)

Event-Driven (asynchronous
communication)

Real-time
processing

Not always optimal as high server
load may lead to delays.

Suitable for real-time event processing
with minimal latency (e.g., monitoring
systems).

High load systems Latency may accumulate with an
increase in the number of requests.
Scalability is limited.

Suitable for systems with high event
volumes, such as IoT platforms, as it
can handle parallel events efficiently.

Inter-service
communication

Problems with cascading
dependencies where the failure of
one service blocks others.

Resilient to failures due to service
independence and ability to process
events independently.

Handling large
data volumes

Not always efficient at handling
large volumes of data due to
scalability limitations.

Suitable for streaming data processing,
such as real-time data streams, using
message brokers (e.g., Kafka).

Flexibility and
fault tolerance

May be less flexible in failure
conditions as requests block
execution until a response is
received.

Provides high flexibility and fault
tolerance, as services can continue
processing messages regardless of
others' states.

In those applications where data consistency is required to be strict, REST-style interactions
remain the most reliable choice. For example, in banking applications or accounting software, it is
crucial that every transaction is executed in a strictly defined order and does not provide any scope
for inconsistencies. REST supports direct request processing, and ACID guarantees minimize the
chances of incorrect operations. But with more requests, there is a scalability issue, as every service
call threads-blocks until a response is received [8].

Conversely, event-driven systems are extremely effective in cases where a large number of
events have to be processed with very low inter-service dependency. For instance, in processing
systems for streaming data like IoT platforms or analytics services, the utilization of asynchronous
message queues can drastically enhance throughput. In such systems, delays in processing an
individual event are less significant than the ability for horizontal scaling and overload tolerance.

Failure tolerance is another critical feature. Using the REST model, failure of any one of the
primary services can propagate through the system since the clients are expecting a synchronous
response. This necessitates load balancers and retry logic, which is an increased level of infrastructure
complexity. In event-driven systems, losing a service does not obstruct request processing, as events
are stored in message brokers temporarily. However, such architectures require additional
management of event handling and deduplication logic, especially if the data is critical.

Hence, the use of either REST or event-driven is determined by the requirements of a given
scenario. When data consistency with low integration complexity is needed in a system, REST
remains the best choice. When fault tolerance and scalability are crucial in heavy loads, event-driven
interaction is more flexible and efficient in handling events. In some cases, hybrid models combining
both approaches are used with a blend of both depending on operation urgency and latency
requirements.

Conclusion
Comparative analysis of synchronous REST calls and asynchronous event-driven

communications within microservice architecture has shown that the best method is determined by
requirements in terms of performance, scalability, and data consistency. REST provides predictability
as well as high consistency but is limited to blocking calls and therefore reduces its efficiency in cases
of high loads. Event-driven designs allow you to achieve high throughput and fault tolerance but
require additional mechanisms for state matching as well as control over event processing order. In
scenarios that require low latency and deterministic execution of operations, REST remains among
the best solutions. In high parallelism systems and dynamic load, the event-driven design works
better. In some cases, the optimum is a hybrid model that combines the strengths of each to find
balance in consistency, processing velocity, and scalability quickness.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 20

References
1. Lercher A. Managing API Evolution in Microservice Architecture. // In Proceedings

of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings. 2024. P. 195-197.

2. Söylemez M., Tekinerdogan B., Tarhan A. Microservice reference architecture design:
A multi‐case study. // Software: Practice and Experience. 2024. Vol. 54. № 1. P. 58-84.

3. Batista C., Morais F., Cavalcante E., Batista T., Proença B., Rodrigues Cavalcante W.
Managing asynchronous workloads in a multi‐tenant microservice enterprise environment. //
Software: Practice and Experience. 2024. Vol. 54. № 2. P. 334-359.

4. Traini L., Cortellessa V. Delag: Using multi-objective optimization to enhance the
detection of latency degradation patterns in service-based systems. // IEEE Transactions on Software
Engineering. 2024. Vol. 49. № 6. P. 3554-3580.

5. Kafka 2.0 Documentation / Kafka // URL:
https://kafka.apache.org/20/documentation.html (date of application: 18.08.2025).

6. Garifullin R. Application of RxJS and NgRx for reactive programming in industrial
web development: methods for managing asynchronous data streams and application state //
International Journal of Professional Science. 2024. № 12-2. P. 42-47.

7. WellRight modernizes to an event-driven architecture to manage bursty and
unpredictable traffic / Amazon Web Services // URL:
https://aws.amazon.com/ru/blogs/architecture/wellright-modernizes-to-an-event-driven-
architecture-to-manage-bursty-and-unpredictable-traffic/ (date of application: 18.08.2025).

8. ACID Properties in DBMS / Geeks for Geeks // URL:
https://www.geeksforgeeks.org/acid-properties-in-dbms/ (date of application: 18.08.2025).

https://kafka.apache.org/20/documentation.html
https://aws.amazon.com/ru/blogs/architecture/wellright-modernizes-to-an-event-driven-architecture-to-manage-bursty-and-unpredictable-traffic/
https://aws.amazon.com/ru/blogs/architecture/wellright-modernizes-to-an-event-driven-architecture-to-manage-bursty-and-unpredictable-traffic/
https://www.geeksforgeeks.org/acid-properties-in-dbms/

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 21

UDC 004.415: 004.42

DYNAMIC TRAFFIC CONTROL MECHANISMS IN DISTRIBUTED
SYSTEMS AS A MEANS OF ENSURING ADAPTABILITY AND FAULT

TOLERANCE IN DIGITAL INFRASTRUCTURE

Terletska K.
bachelor’s degree, Lviv polytechnic national university

(Lviv, Ukraine)

МЕХАНИЗМЫ ДИНАМИЧЕСКОГО УПРАВЛЕНИЯ ТРАФИКОМ В
РАСПРЕДЕЛЕННЫХ СИСТЕМАХ КАК СРЕДСТВО ОБЕСПЕЧЕНИЯ

АДАПТИВНОСТИ И ОТКАЗОУСТОЙЧИВОСТИ ЦИФРОВОЙ
ИНФРАСТРУКТУРЫ

Терлецька Х.В.

бакалавр, Национальный университет «Львовская политехника»
(Львов, Украина)

Abstract
This article examines modern dynamic traffic control mechanisms in distributed computing

systems as a means of enhancing the adaptability and fault tolerance of digital infrastructure. It
analyzes load balancing algorithms, adaptive rate limiting, low-priority request shedding, and
resource scaling strategies. Special attention is given to the integration of these algorithms into cloud-
native architectures. The article emphasizes the role of observability as a foundational element
enabling the transition from reactive to proactive traffic management. It concludes that the combined
application of these mechanisms establishes a robust architectural foundation for the stable operation
of distributed systems under high-load conditions.

Keywords: distributed systems, traffic management, scaling, fault tolerance, observability,

cloud architectures, digital infrastructure.

Аннотация
В статье рассматриваются современные механизмы динамического управления

трафиком в распределенных вычислительных системах как инструмент повышения
адаптивности и отказоустойчивости цифровой инфраструктуры. Анализируются алгоритмы
балансировки нагрузки, адаптивного ограничения скорости, сброса низкоприоритетных
запросов и масштабирования ресурсов. Особое внимание уделяется интеграции алгоритмов в
облачные архитектуры. Подчеркивается роль наблюдаемости как системообразующего
элемента, позволяющего перейти от реактивного к проактивному управлению трафиком.
Делается вывод о том, что совокупность этих механизмов формирует надежную
архитектурную основу для устойчивого функционирования распределенных систем в
условиях высокой нагрузки.

Ключевые слова: распределенные системы, управление трафиком, масштабирование,

отказоустойчивость, наблюдаемость, облачные архитектуры, цифровая инфраструктура.

Introduction
Distributed computing system forms the foundation of digital infrastructure that offers

scalability, availability, and continuity of service under constantly varying network loads. Increasing
growth in data volumes causes traffic variability to increase in significance, where abrupt peaks and

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 22

irregular distribution of requests are typical. This necessitates the introduction of adaptive traffic
control mechanisms that can appropriately react to external and internal variations in real time without
impacting system performance or reliability.

Conventional static resource allocation techniques have proved ineffective under highly
dynamic load situations, and hence the need for intelligent and adaptive mechanisms. Load balancing
algorithms, adaptive request throttling, low-priority request shedding, and predictive scaling based
on behavioral traffic analysis are gaining particular importance as key techniques in this context.

The goal of this study is to analyze and systematize dynamic traffic management mechanisms
in distributed systems, with a focus on enhancing adaptability and fault tolerance. The research covers
both the algorithmic principles of these mechanisms and their practical implementation in cloud-
native environments, including Kubernetes, Istio, Envoy, and other components of modern digital
platforms.

Main part. Traffic management in distributed architectures
Traffic control in distributed computing systems is a service whose impact is directly felt on

the stability and performance of the entire digital infrastructure. The most common reason for
instability is the sudden spikes in load that occur due to seasonal, day-by-day, or event-driven
fluctuations in user traffic. Flash sales, live streaming, and viral social network clips are typical
examples that can produce an immediate flood of incoming requests.

Another critical parameter is request asymmetry – a state of affairs whereby certain
components of the system is disproportionately heavily loaded compared to other components. This
disparity can be due to heterogeneous user patterns, non-uniform data distribution, or application-
level semantics. Added on top of this is the distributed nature of modern designs: geo-distributed
nodes, microservice-based deployments, and independently scaling components imply that request
handling coordination has to withstand and adjust to adaptive routing schemes.

In such decentralized environments, ensuring trusted coordination and authentication between
distributed components becomes increasingly important. Decentralized authentication methods
improve system resilience by reducing dependency on centralized control points and enabling
autonomous trust verification within distributed network topologies [1].

In response to these challenges, distributed systems actively employ load balancing
mechanisms that ensure the even distribution of incoming requests across available service instances
or nodes (fig. 1).

Figure 1. Load balancing architecture

Load balancing may also be done at the network layer (L4) as well as application layer (L7),
depending on criteria such as request path, headers, client IP, and target service's workload. Existing
deployment such as Envoy, NGINX, and HAProxy already support the use of algorithms such as
round-robin, least connections, random, and user-supplied custom routing based on user-specified
values. Even distribution evenness is also a concern in dynamically scalable systems but not the sole

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 23

consideration; latency, geographical node proximity, and network anomaly resilience also must be
taken into account.

Alongside load balancing, adaptive throttling mechanisms are increasingly being adopted to
control service throughput under overload conditions (fig. 2).

Figure 2. Adaptive throttling mechanism

These systems change the volume of incoming requests adaptively based on current load,
response latency, or errors being experienced. As compared to fixed rate limiting, the adaptive version
provides more dynamic utilization of resources and reduces the likelihood of failure in the event of
brief traffic surges.

A complementary technique is request shaping, which involves the preliminary classification
and prioritization of incoming requests (fig. 3).

Figure 3. Request shaping architecture

For example, lower-priority tasks such as background sync or analytics requests may be delayed
or batched, and higher-priority operations would be done as fast as possible. This approach improves
worldwide service quality and avoids system measurements from exceeding operational limits even
during constrained computational resources.

Thus, effective traffic management in distributed systems requires the joint usage of load
balancing, adaptive throttling, and selective request processing methods. The methods mentioned
above facilitate rapid response to traffic changes and ensure continuous service availability.

Scaling as a response to increasing load
Under conditions of variable network traffic, the scaling of computational resources is one of

the fundamental approaches to ensuring fault tolerance and maintaining the performance of
distributed systems. It enables infrastructure to adapt to current traffic volumes, thereby reducing the
risk of service degradation when nominal throughput capacity is exceeded. In engineering practice,
two principal types of scaling are distinguished: vertical and horizontal (table 1).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 24

Table 1
Comparison of horizontal and vertical scaling [2, 3]

Parameter Horizontal scaling (scale-out) Vertical scaling (scale-up)
Principle Adding new instances (nodes, pods,

containers) that work in parallel and
share traffic.

Increasing resources (CPU, RAM, I/O) of
an existing node to handle more workload.

Use cases Ideal for stateless microservices and
independently scalable cloud-native
components.

Applicable to monolithic applications and
databases where request splitting is
difficult.

Scalability
limit

Not strictly limited; constrained by
routing complexity and inter-
instance coordination.

Limited by physical hardware boundaries
(max CPU cores, memory capacity, I/O
limits).

Availability
impact

Typically zero downtime; new
replicas spin up in parallel.

May require system reboot or
redeployment, which can lead to temporary
service downtime.

Fault
tolerance

High resilience – failure of a single
instance doesn’t affect the system if
proper load balancing is in place.

Lower resilience – node failure can halt
service unless a high-availability cluster is
configured.

Infrastructure
needs

Requires orchestrators, load
balancers (L4/L7), and service
discovery tools for traffic routing
and coordination.

Fewer external components needed, but
demands high-performance hardware and
may require manual tuning.

Although horizontal and vertical scaling both address variance in load and load variance
through reactive resource provisioning, both approaches must base themselves on system state at the
time and threshold-based metrics. However, where traffic variability spikes occur suddenly and
unpredictably, reactive autoscaling may not be sufficient for guaranteeing service continuity.
Distributed systems overcome this limitation by relying on smart autoscaling based on machine
learning algorithms to anticipate traffic behavior and pre-empt accordingly. By predicting such traffic
behavior ahead of time, infrastructure can pre-prepare for demand bursts and minimize latency, avoid
resource overload, and maintain the risk of service degradation at low levels.

Rate limiting mechanisms
Controlling the rate of incoming requests is essential for maintaining the stability of distributed

systems under high or unpredictable load. Several classical rate limiting algorithms exist, each
exhibiting distinct characteristics in terms of resilience, control accuracy, and tolerance for short-term
traffic bursts (table 2).

Table 2
Comparison of rate limiting algorithms in distributed systems [4, 5]

Algorithm Mechanism Behavior under load Flexibility
Token Bucket Tokens are generated at a

fixed rate; each token
permits one request. If
tokens are available,
requests are processed
immediately.

Allows short-term
bursts while
maintaining a defined
average request rate.

Moderate – configurable
burst capacity and refill
rate.

Leaky Bucket Requests enter a fixed-size
queue and are processed at
a constant rate, regardless
of input speed.

Strictly enforces rate
limit; drops excess
requests during peak
load.

Low – cannot
accommodate bursts.

Sliding
Window

Tracks the number of
requests within a moving
time window (e.g., last 60
seconds).

Provides fine-grained
rate enforcement and
eliminates artifacts
from fixed intervals.

High – dynamic window
movement reflects actual
load trends.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 25

Algorithm Mechanism Behavior under load Flexibility
Adaptive rate
limit

Dynamically adjusts rate
limits based on real-time
signals such as latency,
CPU load, and error rate.

Reacts to system stress
– reduces throughput
during overload,
restores limits when
system stabilizes.

Very high – can auto-
tune thresholds per
traffic behavior.

The choice of a rate limiting algorithm should be dictated by system design, traffic profiles, and
fault tolerance requirements. In situations of steady load and stringent rate enforcement requirement,
algorithms like Leaky Bucket or Sliding Window are more appropriate. Token Bucket offers greater
flexibility to allow short-term bursts in traffic. Adaptive models are necessary in highly dynamic
situations where user behavior is less likely to be predictable. Their integration with telemetry and
observability systems is the foundation for intelligent traffic management policies that prevent
performance loss and optimize resilience of distributed systems when exposed to loads.

Adaptive load shedding strategies for resource-constrained distributed systems
Handling excess demand under resource saturation requires deliberate mechanisms for

selectively dropping traffic. Load shedding is one such controlled strategy, where a system
intentionally discards part of the incoming requests when predefined performance thresholds are
reached or exceeded. Unlike rate limiting, which regulates request flow during normal operation, load
shedding is activated in response to actual or imminent overload.

One common method is priority-based request filtering, which classifies incoming traffic by
criticality. Requests are given high, medium, or low priority according to business rules or service-
level agreements (SLA). For example, order processing may be essential in e-commerce, while
analytics or background synchronization can be backgrounded. Under overload, the system drops or
delays lower-priority requests in order to preserve resources for critical operations. This requires
priority routing and classification features at the API gateway or service mesh.

A second normal method is queue-based admission control, in which the new requests are
placed in a queue and executed based on the available resources. When the queue crosses a certain
threshold, the system can reject new requests or return backpressure to slow incoming traffic. This
method smoothes out short-term bursts and distributes processing over time but may also require
additional logic in the event of extended overload to prevent queue overruns and client timeouts.

Circuit breakers are crucial in service-to-service architecture by isolating directly failed or
overloaded components to prevent cascaded failure. The circuit breaker trips to an «open» state when
it reaches a threshold of errors, temporarily blocking calls to the failed service. Within this period,
fallback responses may be provided, or traffic sent to backups. Following the cooldown time, the
circuit enters a «half-open» condition to recover. In the case of a positive response, the connection is
reopened. This fault-tolerance mechanism allows failing systems to remain operational without total
failure.

The combination of these techniques – priority filtering, admission control, and circuit breakers
– provides a multi-layered load shedding technique. Distributed systems can adaptively handle
overload through this technique, maintaining stability and service continuity despite severe load.

Architectural realization of dynamic traffic management in cloud-native environments
Modern distributed systems are increasingly built using cloud-native approaches, where

pliability, scalability, and manageability are achieved through dynamic resource management
triggered by events and metrics. Cloud environments offer built-in mechanisms for implementing
load balancing, rate limiting, load shedding, and autoscaling mechanisms. Their architectural model
is based on microservices, containerization, orchestration, and service mesh technologies, creating a
favorable environment for deploying traffic management policies with a high degree of automation
and observability (table 3).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 26

Table 3
Traffic management mechanisms in cloud-native architectures [6, 7]

Component
/ tool

Functionality Level of
control

Traffic management
role

Example use case

Kubernetes
HPA

Automatically
adjusts the number
of pods based on
metrics (e.g., CPU,
custom).

Application
layer (Pod
level)

Horizontal autoscaling
– reacts to load
changes to maintain
system responsiveness.

Scaling stateless
services under
fluctuating web
traffic.

Kubernetes
VPA

Dynamically tunes
resource
requests/limits
(CPU, memory) for
running pods.

Resource
scheduling
layer

Vertical autoscaling –
optimizes resource
allocation per pod.

Adjusting memory for
JVM-based services
with variable heap
usage.

Istio /
Envoy Rate
Limit

Enforces rate
limiting policies
using local or
distributed quotas.

L7 (Service
mesh /
proxy
level)

Throttles incoming
traffic to prevent
overload and protect
downstream services.

Limiting login
attempts or API call
rates per user.

Envoy
Circuit
Breaker

Temporarily halts
requests to failing
services based on
error thresholds.

L7 (within
service
mesh)

Prevents cascading
failures by isolating
unhealthy service
instances.

Redirecting traffic
during database
unavailability.

Kubernetes
Ingress +
LB

Routes external
traffic to services;
supports path-
based and host-
based routing.

Edge
(L4/L7,
depending
on setup)

Load balancing –
distributes incoming
traffic across service
instances.

Balancing requests
across replicated web
services.

Such integration of mechanisms in cloud-native systems ensures not only component-level
flexibility but also platform-level robustness across the system. Automated scaling, policy-driven
routing with centralized control, and enterprise-scale telemetry support provide high controllability
with low operational overheads. As a result, cloud platforms are not merely hosting infrastructure for
services, but engaged agents for ensuring fault tolerance and flexibility in distributed digital
infrastructure.

Observability-driven traffic control and failure mitigation in distributed systems
With highly volatile traffic and increasingly sophisticated microservice architecture, reactive

methods such as autoscaling or load shedding alone are not sufficient to ensure the reliability of digital
infrastructure in such environments. Credible and reliable functioning of distributed systems is only
feasible with end-to-end observability across all layers – ranging from low-level networking
interactions to high-level business metrics. With this paradigm, traffic control by observability is the
inevitable next step in adaptive system development whereby not only is there response to what has
already happened but also anticipation of potential overloads and the anticipation of failure prior to
its occurrence.

Modern distributed systems generate huge volumes of telemetry data that typically happen in
three flavors: metrics, tracing, and logging. Summarized numerical measures such as mean CPU
usage, request rate, latency, and error rate are metrics [8]. They are real-time feedback signals
employed for autoscaling, rate limiting, or load redistribution. Distributed tracing is required for
detailed analysis, providing end-to-end visibility into request flows between microservices, indicating
delays and bottlenecks at each step of processing. Logging provides the most detailed event-level
data – capturing exceptions, warnings, and custom messages – and underlies anomaly detection and
post-incident diagnostics.

Effective traffic management requires not only the collection of this telemetry, but its structured
aggregation, correlation, and real-time analysis. Tools such as Prometheus (metrics), Jaeger or

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 27

OpenTelemetry (tracing), and Grafana Loki or ELK Stack (logs) enable a holistic view of
infrastructure state and behavior. In more advanced configurations, observability data feeds machine
learning pipelines for traffic prediction and anomaly detection.

By employing time-series data, traffic loads may be forecast using regression models, ARIMA,
or neural networks such as LSTM. These prediction techniques may detect early warnings for
upcoming overloads – for instance, high latency at sustained request rates or rising message queue
lengths. Services may pre-emptively scale out, adjust rate limits, initiate circuit breakers, or
redistribute traffic flows accordingly. This preventive measure has the effect of reducing occurrence
rate of incidents and recovery time, and improving overall service quality.

Thus, observability-enabled traffic management shifts failure management from a reactive to
proactive strategy. Through the incorporation of telemetry and predictive analytics in the architectural
foundation, systems are endowed with self-healing and self-regulating characteristics, making them
resilient against noisy workloads, software bugs, and external interference. It is essential in crafting
mature, cloud-native digital infrastructures that can provide sustainable operational excellence.

Conclusion
With today's high-loaded and constantly evolving digital environment, fault tolerance and

adaptability of distributed systems are impossible without the integrated employment of traffic
management technologies. Load balancing, adaptive rate limiting, load shedding, horizontal and
vertical scaling approaches enable systems to dynamically respond to fluctuating traffic volumes and
prevent service degradation. Their integration with cloud platforms through the employment of tools
like Kubernetes, Istio, Envoy, and KEDA ensures infrastructure level scaling and control over the
operation. At the same time, observability acts as the catalyst, transforming the traffic control from
reactive to proactive, self-adjusting behavior. All of these collectively ensure a fault-tolerant
architectural environment for continuous operation in uncertainty and with stability, predictability,
and quality of service persistence.

References
1. Ren Y., Wei M., Xin H., Yang T., Qi Y. Distributed network traffic scheduling via

trust-constrained policy learning mechanisms // Transactions on Computational and Scientific
Methods. 2025. Vol. 5. № 4.

2. Knyazeva A. Decentralized authentication methods for distributed networks //
Professional Bulletin: Information Technology and Security. 2024. № 3/2024. P. 12-15.

3. Tsyganok R. Methodology for Building Scalable Microservice Architectures on Go
for High-Load E-Commerce Platforms // Universal Library of Engineering Technology. 2025. Vol 1.
№ 2.

4. Peri A., Tsenos M., Kalogeraki V. Vertical Scaling Can Save Time: Optimizing
Container Scheduling to Handle Sudden Bursts // Proceedings of the 19th ACM International
Conference on Distributed and Event-based Systems. 2025. P. 86-97.

5. Kalyanasundaram T., Panchalingam K., Jegatheesan T., Wijayasiri A., Perera S. Load
Balancer Filter-Based Approach To Enable Distributed API Rate Limiting // 2025 37th Conference
of Open Innovations Association (FRUCT). IEEE. 2025. P. 75-85.

6. Blazhkovskii A. Collecting metrics for continuous platform monitoring // Universum:
technical sciences: electronic scientific journal. 2025. № 3(132). P. 10-15.

7. Oyeniran O.C., Adewusi A.O., Adeleke A.G., Akwawa L.A., Azubuko C.F.
Microservices architecture in cloud-native applications: Design patterns and scalability //
International Journal of Advanced Research and Interdisciplinary Scientific Endeavours. 2024. Vol.
1. № 2. P. 92-106.

8. Zibitsker B., Lupersolsky A. Cost Optimization and Performance Control in the
Hybrid Multi-cloud Environment // Proceedings of the 16th ACM/SPEC International Conference on
Performance Engineering. 2025. P. 147-157.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 28

UDC 004.438:004.42

INTEGRATION OF DEVOPS PRACTICES INTO DEVELOPMENT AND
OPERATIONS PROCESSES OF RUBY APPLICATIONS

Topalidi A.

specialist degree, Moscow state university of geodesy
and cartography (Moscow, Russia)

ИНТЕГРАЦИЯ DEVOPS-ПРАКТИК В ПРОЦЕССЫ РАЗРАБОТКИ И

ЭКСПЛУАТАЦИИ ПРИЛОЖЕНИЙ НА RUBY

Топалиди А.В.
специалист, Московский государственный университет геодезии

и картографии (Москва, Россия)

Abstract
This article examines the integration of DevOps practices into the development and operations

processes of applications built with the Ruby programming language. Particular attention is given to
the architectural and organizational characteristics of Ruby projects that influence the implementation
of automated delivery, testing, and maintenance workflows. It explores the use of modern DevOps
tools such as Docker, Kubernetes, and Terraform within the Ruby ecosystem, focusing on their role
in ensuring environment reproducibility, service orchestration, and infrastructure as code
management. The impact of these solutions on improving the resilience, scalability, and reliability of
the application lifecycle is investigated, along with practical automation cases and typical
implementation schemes.

Keywords: DevOps, Ruby, automation, Continuous Integration/ Continuous Deployment,

Infrastructure as Code, Docker, Kubernetes, Terraform, application operations.

Аннотация
В данной статье рассматривается интеграция DevOps-практик в процессы разработки и

эксплуатации приложений, созданных с использованием языка программирования Ruby.
Особое внимание уделяется архитектурным и организационным особенностям Ruby-
проектов, влияющим на внедрение автоматизированных процессов доставки, тестирования и
сопровождения программного обеспечения. Изучается применение современных DevOps-
инструментов, таких как Docker, Kubernetes и Terraform, в контексте Ruby-экосистемы, их
роль в обеспечении воспроизводимости среды, оркестрации сервисов и управлении
инфраструктурой как кодом. Исследуется влияние этих решений на повышение
отказоустойчивости, масштабируемости и надежности жизненного цикла приложений, а
также рассматриваются практические кейсы автоматизации и типовые схемы технической
реализации.

Ключевые слова: DevOps, Ruby, автоматизация, Continuous Integration/ Continuous

Deployment, инфраструктура как код, Docker, Kubernetes, Terraform, прикладные операции.

Introduction
Over the past years, significant changes have taken place in the methods used for software

development and maintenance. With the demands for faster release cycles and greater scalability
running higher, the adoption of DevOps practices has become of prime importance. Such integration
allows for the automation of the life cycle of the software, the promotion of deployment stability, and
the simplification of infrastructure management. Especially for applications created with Ruby, and

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 29

more so for the Ruby on Rails environment, the complementary use of DevOps tools becomes
especially relevant with the specific characteristics of the ecosystem and with the dominance of
monolithic architectures in place.

Today's DevOps software, such as Kubernetes, Terraform or Docker, have embedded features
to standardize the environment and create Continuous Integration/Continuous Deployment (CI/CD)
pipelines. In spite of that, the use of such software in Ruby-based projects requires proper attention
to aspects such as managing dependencies, structuring code, and running the applications on various
types of environments. Analyzing both successful implementations and common challenges
associated with these technologies can inform more effective strategies for automation and
infrastructure governance within the Ruby ecosystem. The goal of this research is to examine the
specific aspects of integrating DevOps practices and tools, such as Docker, Kubernetes, Terraform
into the development and operations processes of Ruby applications.

Main part. Peculiarities of integrating DevOps practices into the development and
operation of Ruby applications

The adoption of DevOps practices in Ruby-based projects requires careful analysis of multiple
architectural, organizational, and technological facets. Although Ruby has been one of the leading
programming languages used for the development of web applications, its ecosystem has centred
mostly around fast prototyping, monolithic structure, and in-situ configuration options. Such
characteristics pose unique obstacles to the adoption of advanced DevOps practices like continuous
integration, continuous delivery, infrastructure as code, and dynamic scaling.

Most Ruby applications are developed using the Model–View–Controller paradigm and follow
a monolithic structure [1]. While this enables development and testing activities locally, it restricts
flexibility in terms of automation of deployment tasks and the management of application components
independently. The adoption of DevOps practices helps tackle these constraints through creating
standardized pipelines and ensuring consistency of environments between development, testing, and
production phases.

One of the first steps in adopting DevOps integration for Ruby projects is the use of CI tools.
The Ruby language has strong support for testing and static code analysis, with frameworks like
RSpec and Minitest being widely used for unit and integration testing. RuboCop and Brakeman are
also being used for security auditing. Automation of checks at the CI phase ensures that defects are
caught early, before changes are merged into the main codebase, thus reducing the chances of defects
and improving the overall stability of the codebase. Typical CI pipelines in Ruby projects include
dependency installation via Bundler, execution of tests and linters, security checks, and artifact
generation, particularly the creation of Docker images in containerized environments [2].

A core principle of DevOps integration is the creation of a consistent runtime environment.
Unlike with many programming languages, Ruby applications are more sensitive to interpreter
version changes, dependency setups, and OS configurations. Therefore, environmental consistency
must be ensured by the use of configuration files (like .ruby-version, .ruby-gemset, and Gemfile.lock)
and automated provisioning tools (like Vagrant or containerized environments).

From an operational perspective, one of the persistent challenges in Ruby applications lies in
managing application state and dependencies, particularly in scenarios involving background jobs
and message queues. Many Ruby-based systems rely on asynchronous frameworks and libraries, such
as Sidekiq and Resque, that operate in separate processes, requiring careful coordination between
services and consistent lifecycle management. DevOps practices facilitate the automation of these
tasks through deployment scripts, state monitoring, and orchestration of background workers [3].

Equally important is the cultural shift in collaboration between developers and operations
engineers. The Ruby community has traditionally put more weight on code quality and design
modularity; infrastructural concerns have always been considered somewhat secondary to these. The
advent of DevOps patterns requires a redefinition of these boundaries, where the developer takes
more responsibility for the pipeline configuration, the infrastructure definition in code, and the
deployment into the environment.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 30

The application of DevOps practices to Ruby applications is typically an evolutionary move
away from old, locally focused development patterns towards a more mature and flexible system. The
adoption of CI/CD pipelines, environment standardization, and the automation of testing and
deployment processes has become an essential component of modern Ruby projects.

The application of Docker, Kubernetes and Terraform to Ruby projects: automation,
infrastructure and continuous delivery

Modern application development practices force teams not just to code but also to handle the
whole application lifecycle, including the build and test stages, along with the deploy ability to scale
in the prod environments. On Ruby projects, particularly the ones under development and scaling,
Docker, Kubernetes, and Terraform have become the essential tools to fulfill the demands for the
above tasks. Their adoption enables environment reproducibility, centralized infrastructure
management, and reliable implementation of CD pipelines.

Docker addresses one of the central challenges of Ruby applications – environmental
dependency. Given Ruby’s sensitivity to interpreter versions, library compatibility, and build
toolchains, containerization offers a standardized configuration for application execution. Each
component, including the Ruby runtime, required gems, build systems, and supporting utilities, is
encapsulated within a Docker image. This methodology secures consistent behavior across
development, testing, and production environments. Docker images can be transferred to registries
and deployed across different environments without modification, significantly reducing errors
caused by configuration inconsistencies.

Kubernetes is employed to manage scalability, fault tolerance, and complex environment
configurations. Its use in Ruby-based projects enables flexible orchestration, load distribution, and
automatic recovery in the event of failures. Monolithic applications are readily deployable in a
Kubernetes cluster, where the different components like the Rails server, background job processor,
database, caching store, and dependencies are envisioned and managed as separate entities.
Kubernetes allows for careful management of resource allocation and provides automated scaling
based on changes in workload intensity.

One of Kubernetes' most major strengths is the capacity to supply with uniform deployment to
multiple environments such as testing, quality assurance, and production environments. The use of
configuration files and templating software like Helm charts allows the recreation of infrastructure in
a rigid manner on a diverse range of environments. Kubernetes further helps in the orchestration and
maintenance of background tasks and auxiliary services like Sidekiq queues, WebSocket servers, and
scheduled tasks that have traditionally presented some operating difficulties in Ruby-based
infrastructures.

Docker and Kubernetes solve problems with the service orchestration and runtime environment.
Nevertheless, Terraform has functionality to manage the underlying infrastructure. It is not rare to
find the use of Terraform in Ruby projects to create the important components such as servers,
databases, storage devices, load balancers, network devices, and others that form the base
components. This process follows the infrastructure-as-code principles and guarantee reproducibility
and ease of tracking changes.

Terraform is especially useful in situations where fast scalability or the creation of fresh
environments are needed. Instead of handling cloud resources manually, groups are capable of
creating reusable templates that only take slight adjustments for provisioning. This process greatly
reduces the prospect of human error while speeding up the deployment of fresh features. Moreover,
automated infrastructure management enables straightforward recovery from failures, as the entire
architecture, codified and versioned, can be restored to its original state when necessary. To illustrate
how these tools operate in conjunction throughout the application lifecycle, the figure 1 outlines a
typical DevOps pipeline for a Ruby-based project.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 31

Figure 1. DevOps workflow for Ruby-based applications

Given the distinct roles and technical capabilities of listed tools within the DevOps ecosystem,
it is important to consider their respective strengths and limitations when applied to Ruby-based
projects (table 1).

Table 1
Comparison of DevOps tools [4, 5]

Tool Advantages Disadvantages
Docker Environment isolation, simplified

local development, consistent
deployment across environments.

Network and permission complexities,
requires optimized Dockerfile
configuration.

Kubernetes Automatic scaling and self-healing,
high availability, сentralized
orchestration.

Steep learning curve, сomplex initial
setup.

Terraform Infrastructure as code, multi-cloud
support, reproducibility and version
control.

Risk of destructive changes, depends on
provider stability and API.

The integration of Docker, Kubernetes, and Terraform into a unified DevOps pipeline enables
Ruby projects to transcend traditional deployment models and embrace full automation and
operational control. Such a pipeline improves process predictability, reduces manual intervention,
accelerates release cycles, and facilitates frequent code changes without compromising system
stability. These benefits are particularly evident in Agile-oriented teams, where rapid value delivery
and responsiveness to changing requirements are critical [6].

Shopify is one of the world’s largest e-commerce platforms that makes extensive use of Ruby
on Rails and has successfully implemented a large-scale DevOps infrastructure based on Kubernetes.
The engineering team developed an internal platform for orchestrating microservices and
development environments, enabling the creation of automated deployment workflows and
management of over two thousand services. Through deep integration of CI/CD pipelines and a well-
defined infrastructure-as-code strategy, Shopify has achieved both high delivery velocity and stable
environment provisioning while maintaining the core of its business logic in Ruby [7].

GitLab is a widely used DevOps lifecycle management platform and primarily written in Ruby
and serves as a prominent example of deep DevOps integration within a Ruby-based project [8]. The
internal architecture of GitLab supports containerization through Docker, automated CI/CD pipelines,
and a scalable deployment layer on Kubernetes. In addition, GitLab leverages Terraform for cloud
resource provisioning, allowing the team to deploy both testing and production environments
programmatically.

Discourse is a popular open-source platform for online forums and also built with Ruby on
Rails and was designed from the outset with deployment automation and operational efficiency in
mind. The development team maintains an official Docker-based stack that enables one-command

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 32

deployment across a wide range of server infrastructures [9]. Automation extends to environment
configuration, dependency updates, backups, and scalability operations.

Consequently, the adoption of modern DevOps tools allows Ruby applications to overcome
limitations associated with legacy development and deployment practices, positioning them to meet
the demands of contemporary high-load environments. Effectively implemented tools boost
technological resilience and promote organizational process maturity, laying the foundation for
sustained growth and long-term project changes.

Conclusion
The adoption of DevOps practices in Ruby application development and management marks

the significant milestone towards achieving stable and scale-incline software delivery. Traditionally,
the Ruby world has favored localized, monolithic architectures, but rising expectations for reliability
and the need for rapid deployment call for the adoption of automation tools and efficient infrastructure
management. The adoption of CI/CD principles, along with the unified approach for runtime
environments, allows Ruby projects to get aligned with the latest software engineering practices.

The combination of Docker, Kubernetes, and Terraform increases organizational maturity and
technical flexibility. Containerization, with collaborative working, promotes better reproducibility.
Orchestration provides exact control and scale, and infrastructure as code makes the process more
dependable and visible for change management steps. Together, all these elements constitute one
complete technological stack where the development and operational procedures are highly coupled
and bonded with the power of automation. While considering upcoming innovations, this integration
has been considered as the vital base for efficient Ruby application development, examining the
mounting complexity and higher performance expectations.

References
1. Milić M., Makajić-Nikolić D. Development of a quality-based model for software

architecture optimization: a case study of monolith and microservice architectures // Symmetry. 2022.
Vol. 14 (9). № 1824.

2. Dudak A., Israfilov A. Application of blockchain in IT infrastructure management:
new opportunities for security assurance // German International Journal of Modern Science. 2024.
№ 92. P. 103-107.

3. Chatterjee P.S., Mittal H.K. Enhancing Operational Efficiency through the Integration
of CI/CD and DevOps in Software Deployment // In2024 Sixth International Conference on
Computational Intelligence and Communication Technologies (CCICT). 2024. P. 173-182.

4. Ponomarev E. Optimizing android application performance: modern methods and
practices // Sciences of Europe. 2024. № 149. P. 62-64.

5. Chen C.C., Hung M.H., Lai K.C., Lin Y.C. Docker and Kubernetes // Industry 4.1:
Intelligent Manufacturing with Zero Defects. 2021. P. 169-213.

6. Blazhkovskii A. Formation of high-performance teams in mobile development // Cold
Science. 2025. № 13. P. 7-17.

7. Shopify-Made Patterns in Our Rails Apps / Shopify.Engineering // URL:
https://shopify.engineering/shopify-made-patterns-in-our-rails-apps (date of application:
17.08.2025).

8. Infrastructure as Code with OpenTofu and GitLab / GitLab // URL:
https://docs.gitlab.com/user/infrastructure/iac/ (date of application: 18.08.2025).

9. Discourse_docker / GitHub // URL: https://github.com/discourse/discourse_docker
(date of application: 20.08.2025).

https://shopify.engineering/shopify-made-patterns-in-our-rails-apps
https://github.com/discourse/discourse_docker

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 33

UDC 004.4

ARCHITECTURAL DESIGN PATTERNS FOR HIGH-LOAD SYSTEMS:
PRINCIPLES, TOOLS, AND SCALABILITY CONSTRAINTS

Berezhnoy A.

bachelor's degree, Peter the Great St. Petersburg
polytechnic university (St. Petersburg, Russia)

АРХИТЕКТУРНЫЕ ПАТТЕРНЫ ПРОЕКТИРОВАНИЯ

ВЫСОКОНАГРУЖЕННЫХ СИСТЕМ: ПРИНЦИПЫ, ИНСТРУМЕНТЫ
И ОГРАНИЧЕНИЯ МАСШТАБИРОВАНИЯ

Бережной А.А.

бакалавр, Санкт-Петербургский политехнический университет
Петра Великого (Санкт-Петербург, Россия)

Abstract
The article takes into account architectural patterns used when building high-load distributed

systems, such as CQRS, Event Sourcing, and Circuit Breaker. It analyzes their rules of operation,
typical use cases, and shortcomings in terms of scalability, consistency, and fault tolerance. The paper
presents a functional classification of these patterns, highlighting their engineering advantages and
operational risks. Real-world implementation examples from major technology companies are
provided, and criteria for selecting architectural solutions are formulated based on workload
characteristics and infrastructure maturity. The article concludes by emphasizing the rationale for
combining patterns within a unified architectural strategy, taking into account the specifics of
business logic and system availability requirements.

Keywords: architectural patterns, high-load systems, CQRS, Event Sourcing, Circuit Breaker,

scalability, fault tolerance.

Аннотация
В статье рассматриваются архитектурные паттерны, применяемые при проектировании

высоконагруженных распределенных систем, такие как CQRS, Event Sourcing и Circuit
Breaker. Анализируются принципы их работы, типовые сценарии использования и
ограничения, связанные с масштабированием, согласованностью данных и
отказоустойчивостью. Описаны функциональные классификации паттернов, их инженерные
преимущества и эксплуатационные риски. Приводятся примеры применения в крупных
компаниях и формулируются критерии выбора архитектурных решений в зависимости от
характера нагрузки и зрелости инфраструктуры. Делается вывод о целесообразности
комбинирования паттернов в рамках единой архитектурной стратегии с учетом специфики
бизнес-логики и требований к доступности.

Ключевые слова: архитектурные паттерны, высоконагруженные системы, CQRS, Event

Sourcing, Circuit Breaker, масштабирование, отказоустойчивость.

Introduction
Modern high-load information systems form an integral part of digital industry infrastructure

in e-commerce, telecommunications, fintech, and logistics. These systems process millions of
requests, ensure continuous availability of the service, and should prove to be resilient to all types of
failure. In situations with sharply growing user activity and increasing complexity of business logic,

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 34

the architecture of a system is the decisive aspect in reliability and scalability. As such, most emphasis
is on architectural design patterns that help deal with complexity, enhance fault tolerance, and make
distributed systems more flexible.

The goal of this article is to provide an organized presentation of architectural patterns used
when constructing high-load systems and their principles, supporting tools, and scalability
limitations.

Main part. Fundamentals of high-load system design
High-load systems are distributed computing systems that are intended to process huge volumes

of data and massive numbers of simultaneous requests with high reliability and minimal latency. They
are applied in high-traffic setups with rigorous availability requirements, such as e-commerce, real-
time money transactions, telecommunications, web streaming, and high-frequency data
processing [1]. Their architecture must exhibit uniform performance at the peak point of load,
flexibility of resources, and continuous scalability without degrading the quality of service.

The main technical characteristics of high-load systems are horizontal scalability support,
partial failure tolerance, low latency, and high throughput. The current trending architectural
practices involve stateless services, service decomposition using microservices, data replication,
message queueing support (Apache Kafka), sophisticated load balancing techniques, distributed
caching (Redis, Memcached), and data partitioning (sharding). Data consistency in distributed
systems typically relies on eventual consistency models and CAP theorem trade-offs that call for
transactional design and fault tolerance mechanisms.

Scalability is primarily achieved horizontally by adding new nodes and sharing traffic evenly
across them. It includes close coupling of request routing, data locality, and minimizing inter-node
communication. Fault tolerance is obtained through the duplication of essential elements, application
of failure management patterns (Circuit Breakers, retries), real-time system monitoring, and
automatic recovery assistance. High-load systems thus necessitate a unified solution that considers
architectural principles, engineering methods, and automation tools.

Overview of architectural patterns
Architectural design patterns are reusable solutions to common problems that prove to be

recurrent in software system development. Individual algorithms or libraries, by contrast, formalize
successful architectural methods of structuring components, intercomponent communication,
processing data, and failure recovery [2]. Though these templates do not provide for hard-coded
implementations, they supply a strategic framework within which developers can bring system
architecture into line with specific requirements.

There are numerous types of architectural patterns, but the most insightful within the high-load
system setting is the functional orientation classification, i.e., the specific issues to be solved by the
patterns (table 1).

Table 1
Functional classification of architectural patterns in high-load systems

Functional category Purpose of patterns Example use cases
State management Efficient storage, recovery, and

replication of data
Cache consistency, change history
tracking

Fault isolation and
resilience

Protection against cascading
failures, process recovery

Timeout enforcement, automatic
fallback mechanisms

Load balancing and
request routing

Optimization of incoming
traffic distribution

Load balancing across microservices,
geo-distributed routing

Asynchronous
processing and event
queues

Offloading tasks from the main
execution flow

Logging, delayed processing, bulk event
publishing

Scalability Horizontal scaling of system
components

Service decomposition, data sharding

Responsibility
segregation

Improved modularity,
testability, and scalability

Separation of read/write concerns,
modular system architecture

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 35

Functional category Purpose of patterns Example use cases
Consistency
management

Coordination of consistent state
in distributed systems

Eventual consistency, distributed
transaction reconciliation

Thus, the architectural pattern functional categorization is a disciplined approach to creating a
system based on the type of problems they are designed to solve and where they operate. It is highly
applicable in high-load systems, where each decision concerning architecture will have to meet strong
requirements for performance, resilience, and scalability. The above-mentioned table serves as a
reference when selecting the appropriate patterns to assist in creating well-proportioned and flexible
architectures.

CQRS pattern as a mechanism for scalable and isolated management of read and write
operations in high-load systems

The CQRS pattern (Command Query Responsibility Segregation) is an architectural approach
in which state-modifying operations (commands) and read operations (queries) are handled by
separate components (fig. 1).

Figure 1. CQRS pattern

Such a design is based on separation of concerns: read and write operations require different
data models, pose different performance and scaling requirements, and their combined
implementation typically produces architectural baggage and violation of the Single Responsibility
Principle (SRP).

The use of the CQRS pattern in high-load system design is appropriate where there are
asymmetric loads against read and write operations, business logic complexity, and independent
scalability needs for system components. Its implementation should, however, be done with proper
consideration of its engineering benefit and inherent trade-offs (table 2).

Table 2
Technical advantages and limitations of the CQRS pattern [3, 4]

Advantages Disadvantages Applicability notes
Independent scaling of read
and write models using
separate nodes, databases, or
services

Increased architectural
complexity, more services
and sync logic required

Suitable for systems with read-
heavy loads (e.g., 80–90% reads)

Optimized query performance
via precomputed projections or
denormalized views

Eventual consistency issues
between write and read
models

Effective in analytical or
dashboard-heavy applications

Isolated business logic in
command handlers improves
maintainability and rule
enforcement

Harder to trace failures due
to asynchronous event
flows

Works well with strict domain
modeling (DDD); requires
advanced monitoring

Flexible read models allow
multiple data views for APIs or
UI, without affecting write
logic

Migration from CRUD
systems is complex and
may require data model
redesign

Best for greenfield systems or new
microservices

Read availability under partial
failure, since read model can
remain operational if write path
fails

Higher DevOps overhead:
separate deployments,
queues, and fault tolerance
setups

Critical for 24/7 systems requiring
high availability

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 36

Advantages Disadvantages Applicability notes
Natural fit with Event
Sourcing: easy to replay events
and rebuild projections

Steeper learning curve for
teams unfamiliar with
distributed and event-
driven systems

Suitable for experienced teams in
complex domains

Thus, the CQRS pattern is an effective method of improving scalability, maintainability, and
fault tolerance of high-loaded systems, particularly where read operations significantly surpass write
operations and business logic requires strict processing isolation. However, its application introduces
architectural and operational complexity and, consequently, this method is relevant primarily when
the technical team is mature enough and there is an explicit need for the segregation of read and write
concerns.

Event Sourcing pattern: state management through event streams in distributed systems
Event Sourcing pattern leverages the concept of keeping all changes to a system's state as an

immutable stream of events. The system doesn't keep the entity's current state within the database but
keeps every event that has shaped that state, in the order in which they occurred. Thus, the state at
any point in time can be recreated through a re-run of the sequence of events from beginning. Such
an approach makes tracing historical development precise, while simultaneously enhancing flexibility
in modifying business logic, auditing, and system recovery (fig. 2).

Figure 2. Event Sourcing pattern

It is particularly applicable in high-load systems where precise change tracking, operation
rollbacks, full auditability, and process reproducibility are required. Event Sourcing is used in systems
with complex business logic – such as financial systems, CRM systems, and logistics systems – as
well as in architectures where data consistency between multiple services is needed. It is typically
combined with CQRS: commands trigger event creation, which is then processed to build projections
in read models. Table 3 lists the advantages and disadvantages of using Event Sourcing in high-load
architectures.

Table 3
Advantages and limitations of the Event Sourcing pattern in high-load architectures [5, 6]

Advantages Disadvantages Applicability notes

Complete change history:
every event is stored, ensuring
full traceability and
auditability.

Storage complexity: requires
designing an event store and
supporting event versioning.

Relevant for domains with
strict regulatory or audit
requirements (e.g., finance,
insurance).

High fault tolerance: state can
be restored by replaying past
events.

Consistency and ordering
issues in distributed systems.

Requires idempotency
strategies and control of event
order.

Ability to rollback or simulate
changes (event replay, time-
travel debugging).

Increased development
complexity: event schema
migrations and aggregate
management are required.

Suitable for experienced teams
working with event-driven
architectures.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 37

Advantages Disadvantages Applicability notes
Easy integration with CQRS:
events directly feed projections
in read models.

Large data volume due to the
accumulation of events over
time.

Requires snapshotting or
archival strategies to manage
storage.

Flexible business logic: a
single event can be processed
by multiple subscribers.

Demands robust event delivery
and consistency infrastructure
(brokers, retry logic).

Requires a reliable event
backbone such as Kafka,
NATS, or Pulsar.

Improved scalability and
asynchronous processing.

Debugging and testing
complexity: state is built
dynamically, not centrally
stored.

Requires visualization tools
and event stream tracing
support.

Hence, Event Sourcing is a good architectural style that provides great control over state
management, complete change history, and flexible business logic evolution. It is particularly
necessary in systems where strong audit requirements, reproducibility, and data consistency among
microservices are required. However, adopting this pattern also requires specialized event-driven
infrastructure, careful event modeling, and readiness to deal with the added complexity of debugging,
scaling, and maintaining the system. The use of Event Sourcing should be deliberate and linked to
actual system requirements rather than architectural trends.

Circuit Breaker pattern: failure management in distributed high-load systems
The Circuit Breaker pattern is employed to protect systems from cascaded failures and

performance deterioration when auxiliary services are momentarily unavailable or loaded,
respectively, for some elements. Its spirit is to monitor the status of the communications between
services and programmatic call termination to flaky dependencies following a failure quota being
reached. This prevents the failed component from being overloaded, reduces response time latency,
and maintains the integrity of the remaining system (fig. 3).

Figure 3. Circuit Breaker pattern

In high-load system architecture, the Circuit Breaker is a crucial component within fault-
tolerance mechanisms, implemented on the basis of the fail-fast principle. It works best in
microservice and distributed systems, where numerous services communicate across the network, and
delays or failures in one component can lead to a domino effect. The pattern is implemented as a mid-
layer between calling and called components, transitioning between the following states
automatically: closed (normal operation), open (calls are disallowed), and half-open (availability is
tested). As in the case of the patterns discussed above, Circuit Breaker has its own characteristics and
trade-offs (table 4).

Table 4
Advantages and limitations of the Circuit Breaker pattern [7, 8]

Advantages Disadvantages Applicability notes
Reduces load on failing
components by cutting off calls
after reaching the failure
threshold.

Requires careful configuration
of error thresholds, timeouts,
and recovery intervals.

Effective when interacting with
unstable external APIs or
services.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 38

Advantages Disadvantages Applicability notes
Lowers client-side latency
during failures through fail-fast
responses.

Risk of premature interruption
due to temporary fluctuations
in service performance.

Needs metrics analysis and
proper sensitivity tuning.

Increases overall system
stability by isolating failures.

Requires continuous
monitoring and logging of
Circuit Breaker states.

Suitable for microservice
architectures with many
service dependencies.

Supports automatic recovery
via the half-open state.

Complex to test under failure
and recovery scenarios at scale.

Integration with observability
stack (e.g., Prometheus,
Grafana, Zipkin) is essential.

Improves user experience by
enabling controlled error
handling and fallbacks.

May require additional
infrastructure or libraries (e.g.,
Hystrix, Resilience4j).

Can be embedded in API
gateways, service meshes, or
middleware layers.

Easy to integrate into call
chains using middleware or
interceptors.

Increases tracing complexity in
distributed environments.

Requires centralized logging
and correlation of request
identifiers.

The Circuit Breaker pattern is thus a fundamental building block for the design of resilient
distributed systems by isolating failing components and preventing the propagation of errors. Its
effectiveness, however, is directly tied to both the correctness of its setup as well as the quality of
system observability. Properly implemented, not only does it improve fault tolerance, but it also deals
with user experience and system responsiveness during partial outages. However, to be successfully
adopted, it needs to integrate with monitoring tools and a mature operational environment that can
support automated recovery and graceful degradation.

Applicability analysis in real-world systems
Architectural patterns for use in designing high-load distributed systems truly find their worth

only if appropriately tailored to a specific deployment context. Selecting an appropriate strategy needs
to depend on several factors like the type and magnitude of load for a system, the level of acceptable
data consistency, response time requirements, and scalability of individual components. These
patterns are applicable across various domains – including finance, telecommunications, e-
commerce, and logistics – where reliability and throughput are critical [9]. No less important are the
maturity of the team, the presence of a stable DevOps foundation, and readiness to handle
sophisticated event-driven logic under production. Early adoption of a pattern, even one that is
theoretically correct, on unjustified premises, may introduce with it increased operational complexity,
reduced system reliability, and debug and maintenance challenges.

In reality, CQRS (Command Query Responsibility Segregation), Event Sourcing, and Circuit
Breaker patterns are used in the industry on a wide scale to implement robust and scalable distributed
systems. For instance, CQRS is used by Amazon in a number of high-volume, consumer-facing
systems such as the Amazon Shopping Cart and Order Management System, where read operations
(e.g., availability of product, price, history of order) far exceed writes. By separating the read and
write responsibility, Amazon is able to have distinct read-optimized and write-optimized data models
– i.e., DynamoDB for write and ElasticSearch for query. This kind of architecture enables horizontal
scaling of read replicas, reduces customer query latency during traffic surges (e.g., Black Friday), and
enables event-driven propagation of updates to downstream services like billing or inventory. This
design also enhances fault isolation and allows Amazon to modify read and write subsystems
separately, reducing deployment risk and operational coupling.

Similarly, Netflix employs the Circuit Breaker pattern – especially via Resilience4j and the
deprecated Hystrix – as an essential element of its microservice framework. For example, in the
Netflix API Gateway layer, Circuit Breakers oversee outgoing requests to services downstream like
the Recommendation Engine or User Profile Service. If latency surpasses set limits or error rates
surge (for instance, from regional outages or backend issues), the breaker shifts to an «open» state,
immediately failing calls to prevent overloading the target service. This fail-fast approach not only

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 39

shortens recovery time by decreasing load but also stops thread pools and connection limits in
upstream systems from being exhausted.

Real-world experience with the subject matter proves that the best outcomes are achieved by
carefully combining these patterns, supported by correct configuration and ongoing monitoring.
CQRS, Event Sourcing, and Circuit Breaker complement each other by providing flexibility,
reliability, and scalability. Their effective use, however, requires mature engineering culture, i.e.,
correct monitoring, distributed tracing, automated tests, and a correctly managed approach to
evolving business logic over time.

Conclusion
Given the exponential growth of online services and the resulting increase in system load, the

adoption of architectural patterns has become a fundamental requirement for ensuring system
scalability, fault tolerance, and maintainability. CQRS, Event Sourcing, and the Circuit Breaker are
patterns that perform best when properly applied in high-load system architecture, particularly in
conjunction with event-based models and high-quality monitoring tools. Their use allows systems to
evolve adaptively to new needs while reducing the effect of failures and uneven traffic. But effective
use of these patterns does need mature engineering practices, well-thought-out architectural design,
and detailed consideration of operational constraints.

References
1. Bolgov S. Development of high-load backend systems for banking products: problems

and solutions // Proceedings of the LIII International Multidisciplinary Conference «Innovations and
Tendencies of State-of-Art Science». Mijnbestseller Nederland, Rotterdam, Nederland. 2025. P. 44-
51.

2. Perera C. Optimizing Performance in Parallel and Distributed Computing Systems for
Large-Scale Applications // Journal of Advanced Computing Systems. 2024.Vol. 4. № 9. P. 35-44.

3. Cherif A.N., Youssfi M., En-naimani Z., Tadlaoui A., Soulami M., Bouattane O.
CQRS and Blockchain with Zero-Knowledge Proofs for Secure Multi-Agent Decision-Making //
International Journal of Advanced Computer Science & Applications. 2024. Vol. 15. № 11.

4. Youssfi M., Ezzrhari F.E., Hajoui Y., Bouattane O., Kaburlasos V. Multi-Micro-Agent
System middleware model based on event sourcing and CQRS patterns // Smart Trajectories. CRC
Press. 2022. P. 25-46.

5. Dhanaraj A. Building Resilient Systems: Error Handling, Retry Mechanisms, and
Predictive Analytics in Event-Driven Architecture // Journal of Computer Science and Technology
Studies. 2025. Vol. 7. № 7. P. 317-324.

6. Smirnov A. Efficient microservices scaling: Kubernetes, autoscaling, and load
balancing // International Journal of Advances in Computer Science and Technology. 2025. Vol.
14(6). P. 22-24.

7. Punithavathy E., Priya N. Auto retry circuit breaker for enhanced performance in
microservice applications // International Journal of Electrical & Computer Engineering (2088-8708).
2024. Vol. 14. № 2.

8. Iurchenko A. Optimization of Microservices Architecture Performance in High-Load
Systems // The American Journal of Engineering and Technology. 2025. Vol. 7. № 05. P. 123-132.

9. Kovalenko A. Architectural and algorithmic methods for enhancing the resilience of
high-load backend services in the financial sector // Norwegian Journal of development of the
International Science. 2025. № 158. P. 87-91.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 40

UDC 004.94: 336.64

DIGITAL VISUALIZATION OF INVESTMENT ACTIVITY IN THE EOS
(VAULTA) BLOCKCHAIN ECOSYSTEM

Ulyanov V.

bachelor's degree, Azerbaijan state oil and industry university
(Baku, Azerbaijan)

ЦИФРОВАЯ ВИЗУАЛИЗАЦИЯ ИНВЕСТИЦИОННОЙ АКТИВНОСТИ В

БЛОКЧЕЙН-ЭКОСИСТЕМЕ EOS (VAULTA)

Ульянов В.В.
бакалавр, Азербайджанский государственный университет

нефти и промышленности (Баку, Азербайджан)

Abstract
This article examines the digital visualization of investment activity in the EOS (Vaulta)

blockchain ecosystem. The architecture of the platform based on the Delegated Proof of Stake
mechanism is analyzed, as well as the specifics of the investment environment shaped by the resource
model and the structure of incentives. Directions of financial activity and their impact on the behavior
of ecosystem participants are studied. Special attention is paid to the structure of blockchain data and
its analytical potential, as well as to the role of interface and visual-analytical tools in the
interpretation of investment processes. User experience and interface are analyzed, ensuring cognitive
accessibility of information, reduction of user workload, and increased trust in decentralized services.

Keywords: digital visualization, EOS (Vaulta), investment activity, blockchain data, interface

tools, tokenomics.

Аннотация
В данной статье рассматривается цифровая визуализация инвестиционной активности в

блокчейн-экосистеме EOS (Vaulta). Анализируется архитектура платформы, основанная на
механизме Delegated Proof of Stake, а также специфика инвестиционной среды, формируемой
под влиянием ресурсной модели и структуры стимулов. Исследуются направления
финансовой активности, а также их влияние на поведение участников экосистемы. Особое
внимание уделяется структуре блокчейн-данных и их аналитическому потенциалу, а также
роли интерфейсных и визуально-аналитических инструментов в интерпретации
инвестиционных процессов. Анализируются пользовательский опыт и интерфейс,
обеспечивающие когнитивную доступность информации, снижение нагрузки на пользователя
и повышение доверия к децентрализованным сервисам.

Ключевые слова: цифровая визуализация, EOS (Vaulta), инвестиционная активность,

блокчейн-данные, интерфейсные инструменты, токеномика.

Introduction
The development of blockchain technologies has led to the formation of new forms of

investment behavior, where transparency, accessibility, and data structuring play an important role.
In the context of high complexity of network processes, one of the priority tasks is the creation of
interface and analytical tools that allow not only tracking transactions and economic metrics but also
interpreting them in the context of user behavior.

The EOS (renamed on May 14, 2025 to Vaulta in connection with the transition to a new
strategy focused on creating Web3 banking) ecosystem is a representative model for analyzing such

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 41

processes due to the combination of the Delegated Proof of Stake (DPoS) mechanism and a developed
application network. Visual and interface solutions acquire particular significance in it, providing
both technical detailing of transactional flows and cognitive accessibility of analytics for different
categories of participants. The purpose of the study is to analyze the role of interface and visual-
analytical tools in the interpretation of investment activity in the EOS (Vaulta) ecosystem.

Main part. Investment environment of the EOS (Vaulta) ecosystem
The EOS (Vaulta) ecosystem occupies a special position among blockchain platforms focused

on high-performance decentralized applications (dApps). It provides a scalable, almost
instantaneously responsive, and economically efficient infrastructure. Its investment environment is
shaped by architectural decisions, the governance mechanism, the structure of incentives, and the
behavior of various participants.

At the core of EOS (Vaulta) lies the DPoS consensus mechanism. Unlike the traditional Proof
of Work (PoW), where the right to create a block is obtained through computational costs, or the
conventional Proof of Stake (PoS), which assumes a random selection of validators, it operates
through delegated voting, in which token holders elect 21 block producers. These nodes act on behalf
of the community, ensuring decentralization of governance while maintaining high throughput (fig.
1).

Figure 1. Architecture scheme of the DPoS mechanism in the EOS (Vaulta) network

The abandonment of traditional transaction fees fundamentally changes the nature of user
experience (UX) and investment models. In this ecosystem, a resource model is applied, meaning that
users reserve CPU, NET, and RAM required for executing transactions. This eliminates direct fees
for operations but introduces variable costs associated with the fluctuating value of resources, creating
a secondary market for computing power and storage. In practice, this directly affects investor
strategies. Projects with high transaction frequency or significant data volumes are forced to take into
account the dynamics of resource prices as a factor of operational risk and investment attractiveness.

The combination of delegated consensus, the resource model, and the absence of fees creates a
unique economic environment with specific incentives. Under these conditions, the structure of
interactions among ecosystem participants emerges (fig. 2).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 42

Figure 2. Role map in the EOS (Vaulta) ecosystem

Block producers, such as EOS Nation, EOS Authority, and Greymass, play a significant role
by ensuring network stability and participating in its governance. Developers create dApps and
maintain the infrastructure, shaping the innovative potential of the ecosystem. A decentralized
autonomous organization (DAO) serves as a tool for collective governance and resource distribution.
Retail investors focus on trading, staking, and participation in Initial DEX Offerings (IDO), while
speculators respond to short-term market fluctuations, amplifying price dynamics and liquidity.

Investment flows in the ecosystem are directed not only to traditional segments such as token
trading and staking but also to more complex structures. These areas differ in functionality, user
engagement dynamics, and the maturity of financial instruments (table 1).

Table 1
Main directions of financial activity in the EOS (Vaulta) ecosystem [1]

Direction Functional features Examples The nature of
investment activity

Decentralized
finance (DeFi)

Token exchange, staking, farming,
stablecoin issuance, algorithmic
lending.

Defibox,
USN, sEOS

High, active trading,
high liquidity.

Non-fungible
token (NFT)

Creation and sale of digital objects
(art, game items), collecting.

AtomicHub,
EOSNFT,
SimpleAssets

Average, undulating,
depends on market
trends.

DAO Voting, fund management, decision-
making by network users.

Eden on EOS
(Vaulta),
EOS DAC

Increasing, the
involvement of token
holders in
management.

Tokenomics and
staking

Staking tokens, voting for producers,
receiving dividends, and participating
in income distribution.

EOS (Vaulta) Moderately high, long-
term strategies and
token retention.

Gaming and
metaverse assets

Integration of in-game tokens, NFT
objects, the internal economy of
blockchain games.

Upland Low-medium,
depends on
community activity.

Thus, the investment environment of the EOS (Vaulta) ecosystem represents the result of the
interaction of architectural innovations, the delegated consensus mechanism, and the resource model
with social governance practices and the diversity of economic strategies. Such a combination ensures
high network throughput, stimulates the development of decentralized applications, and creates
conditions for the participation of various categories of users.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 43

Structure of blockchain data and their analytical potential
The study of investment activity in distributed ecosystems is impossible without understanding

how the data forming the basis of the ledger are organized and processed. In the case of EOS (Vaulta),
the volume of generated information is characterized by high density, continuous variability, and
hierarchical organization. In addition to transaction records, the data include the results of smart
contract execution, voting parameters, delegated powers, and the dynamics of account balance states
(fig. 3).

Figure 3. Multilayer data structure in EOS (Vaulta)

At the basic level, blockchain data represent transactions that record the transfer of digital
assets between network participants. However, in EOS (Vaulta), transactions often serve only as an
external interface for more complex operations, which conceal calls to smart contracts. Unlike
bitcoin, where the data structure has limited functionality, it supports multiple contracts calls within
a single transaction, creating specific conditions for analysis.

Alongside transactional activity, an important source of data is the delegation and voting
system implemented within the DPoS mechanism. Every EOS (Vaulta) token holder has the ability
to delegate their votes for the election of block producers, which is recorded in the public chain as
specially formatted operations. These data make it possible to analyze the level of political activity
in the ecosystem, the concentration of votes around specific validators, and to identify correlations
between investment flows and changes in the governance configuration. For example, when leading
block producers change, one can observe the outflow of tokens from their staking addresses and
increased activity of competing nodes, which provides a basis for building behavioral models of
investors.

However, the interpretation of these data is accompanied by serious difficulties. Information is
often presented in a fragmented manner, since records are distributed among smart contracts and
accounts without obvious links, which complicates their consolidation into a coherent picture. An
additional problem is the scale of the data, as hundreds of thousands of transactions are recorded
daily, and without automated filtering they lose their analytical significance. In this regard,
systematization and visual aggregation of information become especially important, allowing for
improved accuracy of interpretations and reduced time for extracting insights. Thus, the data structure
of EOS (Vaulta) possesses high analytical potential, but it is fully revealed only under the condition
of proper visual processing and contextual interpretation.

Interface and analytical solutions in the EOS (Vaulta) ecosystem
The development of the digital infrastructure of blockchain platforms goes beyond data

transmission protocols and consensus mechanisms. A significant indicator of the ecosystem’s
maturity is the availability of interface and analytical tools that ensure accessibility and transparency
of information (table 2).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 44

Table 2
Interface and analytical tools [2]

Type of tool Appointment The effect on the ecosystem
Monitoring panels Real-time tracking of key metrics. Increasing transparency and

manageability of processes.
Data visualization
systems

Graphical representation of complex
indicators.

Simplify the analysis and
interpretation of information.

Interactive reports Dynamic formation of analytics. Adapting data to different user
groups.

Navigation tools Organization of access to
information.

Ensuring the convenience and
accessibility of interaction.

Thus, these tools represent the primary level of organizational support for the ecosystem. This
approach is practically demonstrated by the Everipedia (IQ Network) project, where visual and
interface solutions are used to organize decentralized access to knowledge, confirming the importance
of convenient interfaces and analytics for engaging users in the ecosystem [3]. It is important to note
that their significance is reinforced when combined with functional capabilities that specify ways of
working with data and ensure the practical applicability of solutions (table 3).

Table 3
Functional capabilities of EOS (Vaulta) interface platforms [4, 5]

Function Content Application example
Filtering Data selection by transaction type,

contract address, time periods.
Analyzing the dynamics of operations with
a specific smart contract.

Aggregation Summarizing and grouping data to
form a generalized picture.

Estimation of the total volume of votes or
distribution of tokens.

Personalization Configuring the display and saving
of custom templates.

Subscribe to updates at selected addresses
or integrate wallets.

These functions form the basis of analytical work with EOS (Vaulta) blockchain data. They
make it possible to move from fragmented transaction records to a comprehensive picture of activity,
simplifying the identification of patterns and providing the possibility of customizing analysis for
specific research or investment tasks.

The logical continuation of this approach is the transition to more complex metrics, where the
focus shifts from individual transactions to systemic indicators. In this context, the visualization of
EOS (Vaulta) ecosystem tokenomics becomes particularly important. It covers such indicators as
emission dynamics, the distribution of tokens among different categories of holders, and the level of
inflation. The inclusion of these metrics in analytical dashboards makes it possible to align individual
participants’ strategies with system-wide processes and to assess the long-term sustainability of the
network [6].

In practice, it performs the function of integrating heterogeneous data, allowing the transition
from local observations to a macroeconomic level of analysis. Emission indicators reflect the pace of
monetary supply expansion and provide the basis for assessing inflationary pressure. The distribution
of tokens among retail investors, large holders, exchanges, and DAO indicates the degree of capital
concentration and the level of decentralization. The share of tokens in staking and their turnover rate
serve as indicators of trust in the ecosystem and the willingness of participants to lock funds for the
long term.

Thus, tokenomics becomes a link between the technical infrastructure and the economic
behavior of users. It makes it possible to identify signals of potential system overload, reduced
investment attractiveness, or, conversely, network resilience under conditions of growing
transactional activity.

The further development of the EOS (Vaulta) ecosystem involves adapting interfaces to the
needs of different categories of users. For retail participants, the priority remains the simplicity and
clarity of displaying balances, transaction histories, and staking parameters, while validators focus on
access to voting statistics, block production efficiency, and network load. The organizers of DAO

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 45

require analytical tools to assess community activity, resource allocation, and the monitoring of
voting processes. Taking these differences into account fosters broader involvement in governance
mechanisms and increases the resilience of the entire system. Thus, interface and analytical tools
form the foundation of EOS (Vaulta) investment and management environment, ensuring process
transparency and consistency between the technical and economic levels of network functioning.

The role of UX/UI approaches in the visual analytics of the EOS (Vaulta) ecosystem
Modern blockchain analytics increasingly depends not only on the depth of processed data but

also on the quality of its presentation to the end user. The effectiveness of UX and user interface (UI)
solutions determines not only the convenience of interaction but also the level of trust in the platform,
the degree of analytical engagement, and the user’s willingness to make investment decisions [7].
Visual analytics here acts as an integral part of the overall trust architecture, and its effectiveness
directly depends on how well the logic of perception, navigation, and interpretation is structured.

In the context of a multilayered blockchain data structure, each interface element must be
organized in such a way that the user can easily distinguish levels of information significance. For
example, when viewing block producer voting, producers with the highest number of votes are
visually highlighted, while secondary data are displayed in the background without overloading
perception.

Navigation, as a tool for moving through the interface, must be predictable and intuitive. In
the EOS (Vaulta) ecosystem, navigation solutions are often implemented through multifunctional
panels, tabs, and dynamic filters. An important condition for a modern interface is adaptability,
meaning the system’s ability to work equally well across different devices and screens.

However, the technical organization of the interface is only the foundation. Of equal importance
is the cognitive component, namely the consideration of how humans perceive information. One of
the main tasks in this context is the reduction load, especially when working with multidimensional
and fragmented data. Visual patterns and metaphors play an important role here.

Interactivity is becoming increasingly important. Platforms provide users with the ability to
choose the level of detail in displayed charts: from overall trading volume to the structure of a
liquidity pool by tokens. Such customization of the interface makes visual analytics personalized,
which is especially important in the context of constantly changing investment strategies. When users
can determine for themselves which data are a priority and how they will be displayed, their
engagement and the effectiveness of their interaction with the platform increase.

Finally, in the context of the blockchain environment, where the level of trust directly influences
investor behavior, the quality of UX becomes one of the factors in shaping loyalty and readiness
for investment actions. If the interface is difficult to use, overloaded, or unclear, this not only reduces
the effectiveness of analysis but also creates a negative perception of the entire platform. Conversely,
intuitive, visually clean, and responsive interfaces contribute not only to user retention but also to
increasing the likelihood of their active participation in the economic and governance mechanisms of
the ecosystem.

A telling example is the work of the American team Greymass, which developed the Anchor
wallet, where intuitive interfaces were implemented for interacting with transactions, smart contracts,
and voting for block producers [8]. This case demonstrates that UX/UI-oriented solutions enhance
not only the convenience and security of working within the EOS (Vaulta) ecosystem but also its
long-term resilience.

Thus, UX/UI approaches in the visual analytics of the EOS (Vaulta) blockchain play not an
auxiliary, but a system-forming role. The success of the entire analytical environment, user trust, and
the viability of the decentralized economy depend on how deeply they are integrated into the
platform’s architecture.

Conclusion
Interface and visual-analytical tools of the EOS (Vaulta) ecosystem play an important role in

the interpretation of investment activity. Their significance is not only in enabling the transparency
of process in transactions but also in the potential to arrange data on tokenomics, voting, and user
behavior, thereby providing a full picture of the functioning of the decentralized network.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 46

Visualization of economic and technical parameters enables the participants to make more informed
decisions, which directly affects the sustainability of the ecosystem.

Solutions in the field of UX/UI acquire particular importance, as they determine the quality of
interaction with analytical platforms. Intuitive navigation, flexibility, and responsiveness of interfaces
reduce cognitive effort and build trust in systems, leading to increased user engagement. Interface
solutions and visual analytics thus constitute a vital part of EOS (Vaulta) investment and management
ecosystem, and their further development in the direction of personalization and openness will
determine the long-term sustainability and competitiveness of decentralized platforms.

References
1. Shinkevich A.I., Kudryavtseva S.S., Samarina V.P. Ecosystems as an Innovative Tool

for the Development of the Financial Sector in the Digital Economy // Journal of Risk and Financial
Management. 2023. Vol. 16. № 2. Р. 72.

2. Ehrensperger R., Sauerwein C., Breu R. A Maturity Model for Digital Business
Ecosystems from an IT Perspective // Journal of Universal Computer Science (JUCS). 2023. Vol. 29.
№ 1. Р. 34-72.

3. Maunu J. Revenue models of decentralized applications: an empirical study how
decentralized software products generate income. 2025.

4. Liu H., Mao Y., Li X. An Empirical Analysis of EOS Blockchain: Architecture,
Contract, and Security // ArXiv preprint arXiv: 2505.15051. 2025.

5. Kovalenko A. Architectural and algorithmic methods for enhancing the resilience of
high-load backend services in the financial sector // Norwegian Journal of development of the
International Science. 2025. № 158. P. 87-91.

6. Moncada R. Blockchain tokens, price volatility, and active user base: An empirical
analysis based on tokenomics // International Journal of Financial Studies. 2024. Vol. 12. № 4. P.
107-110.

7. Drogunova Y. Integration of UI and API testing into CI/CD processes as a factor in
accelerating the release of digital products // Universum: technical sciences: electron. scientific
journal. 2025. № 5(134). P. 26-29.

8. Anchor Wallet for Desktop and Mobile / Greymass // URL:
https://www.greymass.com/anchor (date of application 15.08. 2025).

https://www.greymass.com/anchor

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 47

UDC 004.89:65.011

PREDICTIVE ANALYTICS BASED ON MACHINE LEARNING AS A TOOL
FOR COST OPTIMIZATION IN OPERATIONS MANAGEMENT

Mukayev T.

master's degree, Department of engineering mathematics and
technology, University of Bristol (Bristol, United Kingdom)

ПРЕДИКТИВНАЯ АНАЛИТИКА НА ОСНОВЕ МАШИННОГО
ОБУЧЕНИЯ КАК ИНСТРУМЕНТ ОПТИМИЗАЦИИ ЗАТРАТ В

ОПЕРАЦИОННОМ УПРАВЛЕНИИ

Мукаев Т.М.
магистр, Факультет энергетики и нефтегазовой индустрии,

Бристольский университет (Бристоль, Великобритания)

Abstract
This article examines the role of predictive analytics, based on machine learning methods, in

enhancing the efficiency of operations management. It explores approaches to the application of
predictive analytics in cost management, resource and supply chain management, as well as in
maintenance planning. Particular attention is given to the resilience of business processes and the
reduction of inefficiencies through accurate forecasting and the integration of analytical tools into
strategic planning. It investigates the potential of predictive models to reduce costs, improve
equipment reliability, and optimize supply chains.

Keywords: predictive analytics, machine learning, operations management, cost optimization,

resource management, supply chain management.

Аннотация
В данной статье рассматривается роль предиктивной аналитики на основе методов

машинного обучения в повышении эффективности операционного управления. Изучаются
подходы к применению предиктивной аналитики в управлении затратами, ресурсами и
снабжением, а также в планировании технического обслуживания. Особое внимание
уделяется вопросам устойчивости бизнес-процессов и сокращения непроизводительных
расходов за счет точных прогнозов и интеграции аналитических инструментов в
стратегическое планирование. Исследуется потенциал использования предиктивных моделей
для снижения издержек, повышения надежности работы оборудования и оптимизации
цепочек поставок.

Ключевые слова: предиктивная аналитика, машинное обучение, операционное

управление, оптимизация затрат, управление ресурсами, управление снабжением.

Introduction
In the course of constant competition and an unstable economic environment, companies are

starting to seek to increase the efficiency of operations management. It is now possible through the
incorporation of analytical tools. Generally established methods of planning and cost control often
prove insufficiently flexible. They are primarily focused on examining historical data and do not
adequately account for the dynamic changes in both internal and external conditions. Against this
scenery, predictive analytics assumes particular importance.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 48

Machine learning (ML) serves as the technological bases of predictive models, as it provides
high forecasting accuracy and supports the automation of decision-making processes. The application
of such approaches creates new opportunities for cost optimization, maintenance planning, and supply
chain management. Evidence from practice often demonstrates that accurate forecasts not only
contribute to cost reduction but also reduce possible risks associated with resource chain disruptions
or equipment failures. The goal of this research is to examine predictive analytics based on ML as a
tool for cost optimization in operations management.

Main part. Predictive analytics and ML in operations management
The spread of digital technologies has altered managerial approaches to process management

in production. Predictive analytics has attracted special attention in the last few years as involving
statistical techniques and ML algorithms to predict the future state of systems and processes. Unlike
conventional analytical tools that focus primarily on retrospective data analysis, predictive methods
aim to reveal patterns that can describe likely scenarios of future development (table 1).

Table 1
Traditional and predictive approaches to operations management [1, 2]

Aspect Traditional approach Predictive approach
Cost planning Reactive (based on actuals).

Manual estimation of expenses.
Proactive (based on forecasts). Data-driven
optimization of budget allocation.

Supply
management

Excessive inventories or
shortages. Limited to recent usage
metrics.

Optimized inventory levels. Uses historical
trends, seasonality, and demand forecasts.

Maintenance Scheduled maintenance or reactive
repairs upon failure.

Predictive maintenance based on
probability of failure and real-time
equipment data.

Resource
utilization

Static allocation. Based on
estimated peak loads.

Dynamic adaptation. Aligned with
forecasted demand across time intervals.

Cost efficiency Prone to overprovisioning or
underutilization.

Optimized for both cost efficiency and
performance.

Predictive analytics occupies an intermediate position between descriptive and prescriptive
analytics. While the former answers the question «what has happened? » and the latter addresses
«what actions should be taken? », the predictive level provides insight into «what is likely to happen?
». In this sense, it is not merely a matter of recording past events, but of modeling possible future
developments.

These edges can explain the expanding interest in predictive analytics across industries. As
more and more business processes become digital, the need for tools that can make accurate
predictions keeps spreading. Because of this, the predictive analytics market is experiencing stable
growth, as depicted by the projected increase in revenue in the coming years (fig. 1).

Figure 1. Predictive analytics market revenue forecast worldwide, billion dollars [3]

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 49

Algorithms based on ML serve as the fundamental technological basis of predictive analytics.
This branch of artificial intelligence relies on algorithms that are trained on historical data and are
capable of identifying complex nonlinear relationships that traditional statistical methods cannot
capture [4]. Among the most widely used algorithms in operations management tasks are linear and
logistic regression, decision trees, ensemble methods (such as gradient boosting and random forests),
as well as neural networks.

Each of these approaches has distinct advantages. For instance, in retail sales forecasting, an
optimized Random Forest algorithm achieved a coefficient of determination of R² = 0.945, compared
to 0.531 for linear regression, while also reducing the root mean squared logarithmic error by 0.117.
Neural networks, in turn, have proven highly effective for handling large and unstructured
datasets [5]. Further benefits are provided by super-ensemble models, which can significantly
improve forecasting accuracy. In streamflow forecasting, predictive accuracy increased by 20,6%
compared to linear regression, while neural networks demonstrated improvements of 15-17% [6].

The application of ML in operations management enables a shift from static to dynamic
planning. At the same time, the implementation of predictive models entails a number of challenges.
Chief among them is the issue of data quality. Incomplete or imbalanced datasets can lead to
significant forecasting errors. A telling example is Unity, where the ingestion of incorrect data from
a major client into the ML algorithm used for ad placement not only slowed growth but also
compromised the performance of the model. According to the company’s management, the resulting
losses in 2022 amounted to approximately $110 million [7].

Another challenge lies in the interpretability of models. The most accurate algorithms, such
as deep neural networks, often function as a «black box», making it difficult to explain managerial
decisions derived from their forecasts. On top of this problem, the issue of overfitting must be
considered, wherein a model shows high accuracy on historical data but proves ineffective when
predicting new situations.

Despite these circumspections, the potential of predictive analytics in the framework of
operations management remains considerable. It helps managers to forecast system behavior and to
identify the main factors influencing future changes. This knowledge serves as a starting point for
developing cost-optimization strategies, making predictive technologies an integral component of
modern management concepts.

In this way, predictive analytics and ML provide the foundation for transitioning to proactive
operations management. Their use allows organizations to view costs and resources not as static
entities but as dynamic variables, thereby creating the conditions for building resilient management
models.

Cost optimization and resource management based on forecasts
Contemporary organizations strive to increase the efficiency of operational processes through

precise planning and the minimization of uncertainty. Within the context of it, predictive analytics
emerges as a tool that enables decision-making informed by the anticipated future states of systems
and processes.

Forecasting costs plays a central role in operations management. Predictive models allow for
the construction of development scenarios and the comparison of alternative budget allocation
strategies. In the manufacturing sector, such models can anticipate increases in raw material costs due
to market price fluctuations, thereby providing organizations to adjust procurement policies in
advance.

In the service sector, forecasting supports the adjustment of personnel expenses in response to
seasonal variations in demand. Thus, cost management evolves from being merely an accounting
mechanism for recording expenditures into a dynamic system capable of adapting to changing
conditions. Evidence from a study of over 30000 U.S. manufacturing establishments further
demonstrates that firms actively employing predictive analytics achieve significantly higher
productivity, with average sales approximately $918000 greater than those of comparable
competitors [8].

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 50

One of the most promising directions is the use of predictive models in financial risk
management. Through scenario modeling, it is possible to evaluate which specific events, for
example, supply chain delays, rising energy tariffs, or equipment failures, may lead to significant
budget deviations and to plan compensatory measures in advance.

Supply chain and resource management represent some of the most cost-intensive areas for
any organization. Predictive data analysis makes it possible to generate precise demand projections
and identify ideal inventory levels. Companies frequently either keep excessive stockpiles or
experience shortages that interrupt production cycles under conventional management practices.
Various ML models are used in supply chains and logistics to estimate delivery times and determine
the likelihood of delays. The integration of supply chain management (SCM) systems with predictive
analytics should receive special attention. Such an approach creates the conditions for more accurate
procurement planning and a reduction in nonproductive expenditures [9].

An important area of application for prospective analysis is predictive maintenance.
Traditional approaches involve scheduled servicing at predetermined intervals. This methodology is
not always considered efficient, since equipment may fail earlier than expected or operate reliably for
longer than planned. Predictive models make it possible to forecast the likelihood of failure based on
data on equipment condition and external factors. This method facilitates substantial reductions in
repair costs by preventing unplanned downtime and alleviating expenditures associated with
unscheduled maintenance (fig. 2).

Figure 2. Potential failure diagram presenting inspection intervals and predictive maintenance [10]
Practical applications of predictive analytics demonstrate significant economic benefits.

Empirical findings from a 2025 study further indicate that the use of predictive analytics across
organizations in various sectors has a notable impact on key dimensions of performance. Respondents
reported improvements in forecast accuracy, acceleration of decision-making processes, reductions
in operational costs, and higher levels of customer satisfaction (table 2).

Table 2
Impact of predictive analytics on business performance [11]

Metric Mean (%) Standard deviation
Predictive analytics adoption 67,4 10,6
Decision-making speed
improvement

73,3 10,2

Forecasting accuracy 76,6 10,2
Operational cost reduction 60,4 12,1
Customer satisfaction increase 67,6 10,1

In addition to examples of predictive analytics found in academic research, there are also
notable cases of its application in industry. For instance, Pinterest achieved a 20% reduction in
infrastructure costs through more accurate cloud resource scaling, ensuring payment only for the
capacity actually utilized. Similarly, Slack Technologies reduced cloud service expenses by 15-20%
by detecting billing anomalies early and renegotiating contracts with providers [12].

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 51

McDonald’s, as part of its digital transformation and in collaboration with Google Cloud,
integrated predictive analytics into procurement and inventory management processes across more
than 40000 restaurants. This initiative helped the company to optimize supply chains, lower costs,
and boost the resilience of its supply operations [13].

A common thread across these cases is the transition to a new mode of cost management. Rather
than reacting to past events, organizations are acting proactively. This shift reduces expenditures and
fosters the development of long-term sustainability strategies, where each forecast becomes a tool for
strengthening competitiveness [14]. Leveraging predictive insights in finance, procurement, resource
management, and maintenance thus lays the groundwork for more resilient business models.

Conclusion
Predictive analytics powered by ML is turning into a valuable asset in terms of improving the

effectiveness in operation management. Through the use of forecasting models, entities are in a
position to plan for future states in their systems, check prospective risks, as well as arrive at more
prudent resource and cost allocation decisions. Through this, entities are in a position to transition
from reactive management approaches to proactive management approaches whose core is
anticipating potential modifications as well as their abilities to change ahead of time.

The use of predictive technologies in supply chain management and budgetary planning shows
great promise for lessening expense while guaranteeing the durability of business processes. The
integration of precise forecasts with adaptive management approaches serves to reduce inefficiencies
to a minimum, enhance equipment reliability, and better-optimize supply chain systems. Aligned
together, these variables put predictive analytics on solid ground as the means to establishing
sustainable long-term sources of competitiveness.

References
1. Yarov Y. Optimization of business processes in construction companies using digital

technologies and automation // Sciences of Europe. 2025. № 167. P. 67-70.
2. Zharmagambetov Y. Application of machine learning algorithms in financial risk

management systems // International Research Journal of Modernization in Engineering Technology
and Science. 2025. Vol. 7. № 5. P. 1503-1509.

3. Predictive Analytics Statistics 2025 By A Practical Approach / Market.us Scoop /
URL: https://scoop.market.us/predictive-analytics-statistics/ (date of application: 17.08.2025).

4. Kiselev R. Cyberattack prediction models using machine learning // Professional
Bulletin: Information Technology and Security. 2024. № 1/2024. P. 24-28.

5. Ganguly P., Mukherjee I. Enhancing retail sales forecasting with optimized machine
learning models // In2024 4th International Conference on Sustainable Expert Systems (ICSES).
2024. P. 884-889.

6. Hristos T., Georgia P., Andreas L. Super ensemble learning for daily streamflow
forecasting: large-scale demonstration and comparison with multiple machine learning algorithms //
Neural Computing & Applications. 2021. Vol. 33(8). P. 3053-3068.

7. The Impact of Bad Data and Why Observability is Now Imperative / IBM / URL:
https://www.ibm.com/think/insights/observability-data-benefits (date of application: 23.08.2025).

8. Brynjolfsson E., Jin W., McElheran K. The power of prediction: predictive analytics,
workplace complements, and business performance // Business Economics. 2021. Vol. 56(4). P. 217-
39.

9. Stepanov M. Аdaptive control systems for optimizing electric drive operation and
reducing energy consumption in challenging conditions // Original research. 2024. Vol. 14. № 9. P.
86-92.

10. Achouch M., Dimitrova M., Ziane K., Sattarpanah Karganroudi S., Dhouib R., Ibrahim
H., Adda M. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges //
Applied Sciences. 2022. Vol. 12(16). № 8081. P. 1-22.

https://scoop.market.us/predictive-analytics-statistics/
https://www.ibm.com/think/insights/observability-data-benefits

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 52

11. Alhumaidi N. Quantitative Analysis of Predictive Business Analytics for Dynamic
Decision-Making: A Survey-Based Study on Organizational Strategy Optimization // International
Business & Economics Studies. 2025. Vol. 7. P. 103-124.

12. Kass E. Predictive Analytics for Cloud Resource Planning and Cost Forecasting /
Authorea // URL: https://www.authorea.com/users/925546/articles/1297287-predictive-analytics-
for-cloud-resource-planning-and-cost-forecasting (date of application: 27.08.2025).

13. Kotagi V. Leveraging Big Data and Business Intelligence: A Case Study of
McDonald's Competitive Advantage // Research and Applications of Web Development and Design.
2024. Vol. 8(1). P. 8-14.

14. Nazarova Ye. The influence of psychoanalytic practices on leadership and
organizational culture // International Journal of Professional Science. 2025. № 4(1). P. 71-77.

https://www.authorea.com/users/925546/articles/1297287-predictive-analytics-for-cloud-resource-planning-and-cost-forecasting
https://www.authorea.com/users/925546/articles/1297287-predictive-analytics-for-cloud-resource-planning-and-cost-forecasting

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 53

UDC 004.8: 519.6

FEATURE SELECTION METHODS IN MACHINE LEARNING: FROM
SIMPLE FILTERS TO INTERPRETABILITY WITH SHAP

Bondarenko K.

master’s degree, HSE University (Moscow, Russia)

МЕТОДЫ ОТБОРА ПРИЗНАКОВ В МАШИННОМ ОБУЧЕНИИ: ОТ
ПРОСТЫХ ФИЛЬТРОВ ДО ИНТЕРПРЕТИРУЕМОСТИ С SHAP

Бондаренко К.А.

магистр, Национальный исследовательский университет
«Высшая школа экономики» (Москва, Россия)

Abstract
This paper examines feature selection methods in machine learning tasks and their impact on

model performance and interpretability. The problem of high-dimensional data remains one of the
most critical challenges in modern analytics, as redundant and irrelevant features increase the risk of
overfitting, complicate computations, and reduce the transparency of conclusions. The aim of this
study is to provide a comparative analysis of filter, wrapper, and embedded feature selection methods,
as well as interpretation techniques based on SHAP, with an emphasis on their practical application.
As an example, the widely used California Housing dataset was employed for modeling and feature
importance evaluation. The analysis utilized permutation importance, partial dependence plots, and
SHAP to assess and compare the relevance of features.

Keywords: Feature selection, filter methods, wrapper methods, embedded methods,

interpretability, SHapley Additive exPlanations (SHAP).

Аннотация
В данной работе рассматриваются методы отбора признаков в задачах машинного

обучения и их влияние на качество моделей и интерпретируемость результатов. Проблема
высокой размерности данных остаётся одной из важнейших в современной аналитике,
поскольку избыточные и нерелевантные признаки увеличивают риск переобучения,
усложняют вычисления и снижают прозрачность выводов. Цель исследования заключается в
сравнительном анализе фильтрационных, wrapper- и embedded-методов отбора признаков, а
также интерпретационных техник на основе SHAP, с акцентом на их практическое
применение. В качестве примера использован популярный датасет California Housing, на
котором проведено моделирование и оценка важности признаков. Для анализа применялись
методы permutation importance, partial dependence plots и SHAP-анализ.

Ключевые слова: отбор признаков, фильтрационные методы, wrapper-методы,

embedded-методы, интерпретируемость, SHapley Additive exPlanations (SHAP).

Introduction
In machine learning (ML), features are measurable characteristics of an object that serve as the

basis for model predictions. For example, in housing price prediction tasks, features may include floor
area, number of rooms, year of construction, and location. The choice and representation of features
directly influence the effectiveness of the model, including its accuracy, robustness to noise, and
generalization ability.

Statistical reports indicate a steady increase in both the number of data sources and the volume
of available information [1]. These datasets vary in complexity and interpretability, which can

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 54

become a challenge for model development. Modern datasets may contain hundreds or even
thousands of features, many of which can be irrelevant, redundant, or even detrimental to training.
Consequently, feature selection remains a major step in data preprocessing, as it helps improve certain
metrics and speed up model performance across a wide range of applications, particularly in medicine
and finance. The importance of feature selection is further reinforced by growing requirements for
explainable artificial intelligence (XAI) [2]. Stakeholders increasingly demand to understand how
and why a model arrives at specific outcomes. Methods such as SHAP provide post hoc explanations,
increasing trust among users, clients, and regulatory bodies.

Main part. Feature selection in ML
High-dimensional datasets are occurring more often in modern ML applications, ranging from

biomedical records and sensor data to financial transactions and industrial monitoring. While the
availability of numerous features potentially expands the descriptive power of models, it also
introduces various technological and methodological challenges. Irrelevant variables can increase
computational cost, complicate model interpretation, and lead to overfitting. Adequate feature
selection addresses these issues by identifying and retaining the most informative subset of variables.
Practical studies show that eliminating irrelevant variables and focusing on the most significant
features can lead to a substantial increase in accuracy, up to 15% compared to models that use all
available data [3].

In general, feature selection methods aim to balance three objectives: efficiency (reducing the
dimensionality of data to speed up training and inference), accuracy (improving generalization by
removing noise), and interpretability (allowing domain experts to understand which variables play a
key role in decision-making). Unlike dimensionality reduction techniques such as principal
component analysis (PCA), which transform the feature space into new components, feature selection
preserves the original variables, making the results easier to communicate in applied domains.

Three broad families of feature selection techniques are typically distinguished: filter, wrapper,
and embedded methods. Each of these approaches reflects a trade-off between computational
efficiency, predictive performance, and interpretability. In practice, the choice of method can depend
on the dataset size, model complexity, and the ultimate purpose of the analysis.

Filter methods
Filter methods are popular due to their simplicity and efficiency at the initial stage of data

analysis. According to recent studies [4], they are among the most widely used approaches in ML
feature selection research. These methods are independent of a specific model algorithm and rely only
on the statistical relationship of each feature with the target variable or on the general properties of
the data (fig. 1).

Figure 1. Diagram of filter methods

One of the common approaches is correlation analysis, which involves studying correlations
between features and the target variable, as well as correlations among the features themselves. The
logic is that informative features should be strongly correlated with the target variable, while at the
same time features should not be highly correlated with each other, so as not to duplicate the same
information. In practice, this is implemented by calculating correlations (e.g., Pearson’s coefficient
for pairs of numerical variables) and removing features that are either weakly related to the target or
strongly duplicating other features.

Another widely used technique is Chi-square test (χ²). For classification problems with
categorical (discrete) features, the χ² test is commonly applied to assess the statistical dependence
between a feature and the target class. The χ² statistic is computed between the distribution of feature
values and classes, and the result is compared with the expected value under the null hypothesis of
independence. Features are ranked according to their χ² values (or the corresponding p-values). A

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 55

high χ² value and low p-value suggest that the feature is likely dependent on the target class, making
it informative for classification.

For feature selection in classification tasks with numerical variables, the analysis of variance
(ANOVA) F-test is widely used. The one-way ANOVA F-test compares the variance of feature
values between groups (classes) with the variance within groups. A high F-statistic indicates that the
mean values of the feature differ significantly across classes compared to within-class variation.
Features with high F-values are therefore considered discriminative and informative. In ML libraries
(e.g., sklearn.feature_selection), ANOVA is implemented as the f_classif method. It returns an F-
value and corresponding p-value for each feature, which can be used to rank and select the top-N
features. However, ANOVA assumes approximate normality of distributions and homogeneity of
variances, so results should be interpreted with caution for skewed or heteroscedastic data.

Finally, another powerful criterion is mutual information, which measures the amount of
shared information (dependency) between a feature and the target variable. Mutual information
estimates how much the uncertainty of the target variable is reduced when the feature is known.
Formally, it quantifies the number of bits of information the feature contains about the class [5]. A
key advantage of mutual information is its ability to capture non-linear and non-parametric
dependencies between X and Y, unlike correlation which is limited to linear relationships. Features
with high mutual information relative to the target are considered highly relevant. In practice, mutual
information can be estimated for each feature via discretization or kernel density estimation. In scikit-
learn, the functions mutual_info_classif and mutual_info_regression are available for this purpose.

Filter methods remain a popular choice at the initial stage of data analysis due to their simplicity
and model-agnostic nature. However, their main limitation lies in the fact that they evaluate features
independently of the chosen learning algorithm. As a result, the selected subset of features may not
always align with the characteristics of a specific model. Therefore, practitioners may resort to other
feature selection strategies.

Wrapper methods
Wrapper methods perform feature selection by evaluating the performance of a model on

different subsets of features. Unlike filter methods, which assess the importance of features
independently of the model, wrapper approaches “wrap” the selection process around a ML
algorithm, using its performance metric to determine the usefulness of features. In this case, candidate
subsets are generated, evaluated with a model, and iteratively refined until the best-performing subset
is selected (fig. 2).

Figure 2. Diagram of wrapper methods

This approach allows capturing nonlinear relationships and interactions between features, for
example, combinations of features that individually have little impact on the result but together
significantly improve the model. The main drawback of wrapper methods is their high computational
cost, since the model must be trained repeatedly on different feature sets. To avoid overfitting during
the selection process, cross-validation is usually applied to evaluate the model at each step.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 56

One of the main approaches is Recursive Feature Elimination (RFE), which iteratively
eliminates less important features by repeatedly training the model. It starts with the full set of features
and fits a base algorithm (e.g., decision tree or logistic regression). The least significant feature (based
on the model’s importance estimate, such as coefficient value or contribution to performance metric)
is then removed, and the model is retrained on the reduced set [6]. This process continues recursively,
eliminating one or even several features at each step, until the desired number of most important
features remains. In this way, RFE implements a “greedy” backward elimination strategy, similar to
stepwise regression. The advantage of RFE is that it considers the effect of features in the context of
the model, allowing it to identify an optimal subset even when features are correlated. However, for
datasets with very high dimensionality, RFE can be computationally expensive.

Another important method is Sequential Feature Selection (SFS), which represents a family
of methods where features are added or removed one at a time in a sequence of steps, with the model
performance evaluated at each stage. SFS can operate in two modes: stepwise forward selection or
stepwise backward elimination. In the forward mode, the algorithm starts with an empty set. On the
first step, all features are evaluated individually, and the one that gives the best model performance
(e.g., highest cross-validated accuracy) is selected. On subsequent iterations, each remaining
candidate feature is tested in combination with the already selected set, and the one that provides the
greatest performance gain is added. The process continues until a predefined number of features is
reached or no further performance improvement is observed. In the backward mode, the algorithm
starts with the full feature set and iteratively removes the least useful feature, evaluating model
performance without each candidate, until the stopping criterion is met.

In summary, wrapper methods allow for the identification of feature subsets optimized for a
specific model, often leading to superior predictive performance. However, their high computational
demands and susceptibility to overfitting make them less practical for very large datasets. This trade-
off has led to increasing interest in embedded methods, which integrate feature selection directly into
the model training process.

Embedded methods
Embedded methods combine the process of feature selection with model training, meaning that

selection occurs “internally” during the algorithm’s learning phase. These approaches are considered
a compromise between simple filter methods and computationally expensive wrapper methods [7].
On the one hand, the model itself “decides” which features are important (as in wrapper methods),
while on the other hand there is no need to manually iterate through multiple models, since the
selection is computationally more efficient. In fact, the learning algorithm implicitly performs feature
selection by regularizing or evaluating the contribution of features (fig. 3).

Figure 3. Diagram of embedded methods

At a preliminary stage, all features are provided to the learning algorithm, which then evaluates
their relevance internally during training. As a result, only the most significant predictors are retained
and directly used in the final model. This integration of training and feature selection shows the main
advantage of embedded approaches – features are evaluated as part of model building, not in a
separate step.

L1 Regularization (LASSO). Regularization with the L1 norm (e.g., in the linear Lasso model)
performs feature selection by adding a penalty term to the loss function proportional to the sum of

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 57

the absolute values of the model coefficients. As a result of this penalty, many coefficients are shrunk
exactly to zero, the corresponding features are automatically excluded from the model. Thus, L1
regularization simultaneously improves the generalization ability of the model (by preventing
overfitting through complexity control) and performs embedded feature selection by setting irrelevant
parameters to zero. By contrast, L2 regularization (Ridge) reduces coefficients but does not drive
them to zero, so L2 does not actually perform feature selection. A practical illustration of the
effectiveness of L1 regularization can be found in studies using the EEG (Electroencephalography)
Emotion dataset, where combining Random Forest (RF) with LASSO feature selection improved
classification accuracy from 98.78% to 99.39%, demonstrating how penalization and embedded
feature selection can increaase model performance in high-dimensional biomedical data [8].

Decision Trees and Ensembles (Random Forest, XGBoost, LightGBM, etc.). Tree-based
algorithms have a built-in ability to evaluate feature importance through specific importance
measures. During tree construction, features that provide the greatest reduction in impurity or error
are chosen for splits. After training, it is possible to compute how much each feature reduced the
splitting criterion on average, this serves as the feature importance metric. In RF (ensembles of many
trees), importances are averaged across all trees. In gradient boosting, the contributions of each
feature are accumulated over all base learners. Importances are typically normalized so that their sum
across all features equals 1.

Embedded approaches combine model training and feature selection within a single process.
Their advantage lies in the ability to directly exploit the structure of the learning algorithm, yielding
feature subsets that are optimized for the chosen model. However, the results are often model-
dependent, meaning that different algorithms may assign different levels of importance to the same
features.

Interpretability and explanation with SHAP
SHAP (SHapley Additive exPlanations) is a modern method for interpreting the results of

ML models, based on the concept of Shapley values from game theory. Unlike feature selection
methods, which aim to identify significant features for the model, SHAP is used for post hoc
explanation of an already trained model. It decomposes the model’s prediction into the sum of
individual feature contributions, showing how much and in what direction each feature influenced a
specific prediction. The sum of all SHAP values for an observation, plus the baseline value, equals
the model’s prediction, ensuring local accuracy of the explanation.

One of the key strengths of SHAP is its model-agnostic nature: it can be applied to any ML
model as an interpretation tool without requiring modifications to the algorithm itself. Optimized
implementations exist for decision trees and tree-based ensembles, making SHAP efficient enough to
compute even on large datasets. SHAP provides both local explanations (at the level of individual
predictions) and global interpretability (overall feature importance across the model).

With its help, one can ensure that the model relies on expected, meaningful features rather than
on random noise factors. Moreover, SHAP results can help identify problematic dependencies. If
SHAP reveals a suspiciously strong influence of a non-obvious feature, this may indicate data leakage
or correlations requiring further analyst attention.

To compute SHAP values, the algorithm considers all possible feature coalitions and the
marginal contribution of each feature to improving the prediction when it is added to a coalition.
Exhaustively enumerating all combinations of features is computationally expensive, so
approximation algorithms have been developed. In particular, the authors of SHAP proposed
specialized methods to accelerate computation: the model-agnostic KernelSHAP and the high-
performance TreeSHAP for decision tree models [9].

In addition to Shapley-value-based methods (SHAP), another widely used technique for
interpreting ML models is LIME (Local Interpretable Model-agnostic Explanations). Its key idea
is to approximate the behavior of a complex “black-box” model in the vicinity of a single observation
using a simple and interpretable model, such as linear regression. This approach makes it possible to
explain individual predictions by highlighting the features that had the strongest influence on the
outcome for that specific instance.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 58

The advantage of LIME lies in its simplicity and universality. It can be applied to any model
and type of data with relatively low computational costs. However, interpretations obtained through
LIME may be unstable. Small changes in the data or parameters can lead to significant differences in
explanations. For this reason, LIME is often regarded as a tool for rapid prototyping or preliminary
hypothesis testing, whereas SHAP is used for more rigorous and reproducible analysis (table 1).

Table 1
SHAP and LIME differences [10, 11]

Aspect SHAP LIME
Theoretical
basis

Based on Shapley values from
cooperative game theory

Based on local linear approximations
of the model

Output
consistency

Provides consistent and additive
explanations

May produce different explanations for
the same instance depending on
sampling

Scope Both local (per-instance) and global
(overall feature importance)
explanations

Primarily local explanations for
individual predictions

Model coverage Model-agnostic, with optimized
implementations for tree-based
models

Fully model-agnostic, works with any
black-box model

Computation
cost

Higher, especially for complex
models, though TreeSHAP reduces
cost

Generally faster, but depends on
number of samples used

Interpretability Quantifies exact contribution of each
feature to prediction

Provides approximate influence of
features using surrogate model

Stability More stable and reproducible
explanations

More sensitive to randomness and
sampling variations

SHAP provides more reliable and reproducible explanations, allowing not only the
identification of the most important features but also the visualization of their influence in an intuitive
way. Such tools make ML results understandable and accessible even to specialists without deep
expertise in data science.

Practical study
To illustrate the application of interpretation techniques and feature importance evaluation, an

experimental modeling study was conducted. The experiments were conducted in Python 3.11
(Jupyter Notebook, Anaconda) using the libraries scikit-learn v1.5, SHAP v0.44, and matplotlib v3.9.
As a test dataset, the California Housing dataset from scikit-learn was used (20,640 observations, 8
features). The models were built with the Random Forest Regressor algorithm configured with 400
trees and the parameters max_depth=None, min_samples_split=2, and min_samples_leaf=1. Feature
importance was analyzed using three methods: Permutation Importance, Partial Dependence Plot, and
SHAP values.

At the initial stage of analysis, it is often reasonable to apply traditional statistical methods in
order to evaluate straightforward dependencies between features. Such techniques provide a
preliminary understanding of the dataset and can highlight apparent correlations before more
advanced modeling is applied. The correlation heatmap in this case illustrates linear relationships
among the housing attributes, showing, in particular, a strong positive correlation between AveRooms
and AveBedrms, as well as a link between MedInc and the target variable MedHouseVal (fig. 4).

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 59

Figure 4. Correlation heatmap of the California housing dataset

Nevertheless, correlation analysis is limited to detecting linear dependencies and does not
account for non-linear or interaction effects that may play a significant role in predictive modeling.
For this reason, subsequent sections focus on ML-based approaches combined with interpretability
techniques, which allow for a more complete assessment of feature relevance and their contribution
to the predictive process. As a first step, feature importance was evaluated, since, as noted earlier,
this measure is inherently embedded in the RF model (fig. 5).

Figure 5. Feature importance in the California housing dataset: (A) Gini importance from the RF model, (B)

Permutation importance on the validation set

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 60

Both Gini importance and permutation importance provide consistent results in identifying the
most relevant features. This similarity is expected, since both approaches capture the degree to which
a feature contributes to model performance. However, permutation importance is generally
considered more robust, as it directly quantifies the change in predictive accuracy when feature
information is disrupted, whereas Gini importance reflects the feature’s role in reducing node
impurity during tree construction.

To further investigate the marginal effect of individual predictors on the target variable, Partial
Dependence Plots were constructed. These plots illustrate the average change in the predicted
response as a given feature varies across its range, while all other features are marginalized (fig. 6).

Figure 6. Partial Dependence Plots for the top-3 features

In particular, the these for MedInc, Latitude, and AveOccup demonstrate the most pronounced
partial dependencies, consistent with their high importance in the model. Unlike feature importance
measures, which quantify global relevance, PDP provide a visual representation of the functional
form of the relationship between predictors and the target.

The SHAP analysis of the California Housing dataset highlights several key patterns in feature
importance. The most influential factor is median income (MedInc), which strongly dominates the
model’s predictions and was also consistently identified as the primary driver of house value in earlier
analyses. Geographical variables such as latitude and longitude also hold an important place,
reflecting regional disparities in the California housing market. The bar plot of SHAP values presents
the average magnitude of feature contributions across all predictions. This representation allows for
ranking variables by their overall importance, providing a global view of the most influential
predictors in the model (fig. 7).

Figure 7. SHAP bar plot of mean absolute feature importance

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 61

The ranking of features based on SHAP values closely aligns with both Gini and permutation
importance, which indicates methodological consistency across approaches. This reinforces that the
observed structure is not an artifact of a single metric, but a robust outcome of the model training
process. The dependence plot illustrates the relationship between SHAP values for the top-ranked
feature and its actual values. This visualization shows how the contribution of the feature changes
across its range, while also capturing interaction effects with other predictors, represented here by
color coding (fig. 8).

Figure 8. SHAP dependence plot for MedInc with AveOccup as interaction feature

Summary plot reveals not only the relative importance of predictors but also the direction and
variability of their impact. It combines both global and local perspectives by displaying the
distribution of SHAP values for each feature across all samples. In this case, the dependence plot
demonstrates how SHAP values for MedInc vary across its range, indicating the feature’s contribution
to model predictions. The color gradient represents values of AveOccup, which allows the
identification of potential interaction effects between features. This visualization thus provides both
a univariate and a bivariate perspective, showing the main effect of MedInc while simultaneously
spotlighting its relationship with AveOccup (fig. 9).

Figure 9. SHAP summary plot

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 62

Overall, the applied methods consistently highlighted a set of key predictors, such as median
income, geographic coordinates, and average occupancy, which were repeatedly identified as having
a substantial impact on the model output. This convergence across feature importance, permutation
analysis, partial dependence plots, and SHAP values confirms the robustness of the results. It should
be emphasized that the California housing dataset is a well-prepared and relatively clean benchmark
dataset, whereas in real-world applications data often exhibit noise, missing values, multicollinearity,
or complex nonlinear interactions. Such challenges typically complicate both model training and
subsequent interpretation. In practice, data scientists and ML-engineers are often required to carefully
choose appropriate methods or combine multiple approaches to effectively tackle these problems and
ensure reliable feature selection and interpretation.

Nevertheless, SHAP-based interpretation offers a more overarching view of the underlying
relationships, capturing both global patterns and local contributions of individual observations. For
specialists, this means an easier way to communicate results to stakeholders who may not be fully
familiar with the technical aspects of statistical modeling, ML algorithms, or the mathematics behind
feature importance measures, but who are primarily interested in understanding the drivers of the
observed outcomes and their practical implications.

Conclusion
Skilled feature selection remains an important component of ML, addressing vital problems of

redundancy, overfitting, and interpretability that arise in high-dimensional datasets. Different
approaches, including filter, wrapper, and embedded methods, provide complementary perspectives,
balancing accuracy, and computational cost. Beyond improving predictive performance, feature
selection contributes to the transparency and reliability of models, which are a major issue in domains
requiring explainability.

In this study, the process of feature selection and interpretation was shown to illustrate how
different methods underline the importance of individual predictors and how these insights can be
presented in practice. Modern interpretability techniques, such as SHAP, extend these benefits by
offering both global and local insights into model behavior. Together with tools like permutation
importance and partial dependence plots, they form a wide framework for understanding the role of
individual features in complex models. In practice, combining multiple techniques provides a more
nuanced and trustworthy view, supporting technical optimization and informed decision-making.

References
1. Volume of data/information created, captured, copied, and consumed worldwide from

2010 to 2023, with forecasts from 2024 to 2028 / Statista / URL:
https://www.statista.com/statistics/871513/worldwide-data-created/ (date of application:
10.08.2025).

2. Ali S., Abuhmed T., El-Sappagh S., Muhammad K., Alonso-Moral J.M., Confalonieri
R., Guidotti R., Del Ser J., Díaz-Rodríguez N., Herrera F. Explainable Artificial Intelligence (XAI):
What we know and what is left to attain Trustworthy Artificial Intelligence // Information fusion.
2023. Vol. 99. № 101805.

3. Cheng X. A Comprehensive Study of Feature Selection Techniques in Machine
Learning Models / SSRN / URL: https://ssrn.com/abstract=5154947 (date of application:
14.08.2025).

4. Liyew C.M., Ferraris S., Di Nardo E., Meo R. A review of feature selection methods
for actual evapotranspiration prediction // Artificial Intelligence Review. 2025. Vol. 58(10). № 292.

5. Zhou H., Wang X., Zhu R. Feature selection based on mutual information with
correlation coefficient // Applied intelligence. 2022. Vol. 52(5). P. 5457-74.

6. Awad M., Fraihat S. Recursive feature elimination with cross-validation with decision
tree: Feature selection method for machine learning-based intrusion detection systems // Journal of
Sensor and Actuator Networks. 2023. Vol. 12(5). № 67.

https://www.statista.com/statistics/871513/worldwide-data-created/
https://ssrn.com/abstract=5154947

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 63

7. Jiménez-Cordero A., Morales J.M., Pineda S. A novel embedded min-max approach
for feature selection in nonlinear support vector machine classification // European Journal of
Operational Research. 2021. Vol. 293(1). P. 24-35.

8. Abdumalikov S., Kim J., Yoon Y. Performance Analysis and Improvement of Machine
Learning with Various Feature Selection Methods for EEG-Based Emotion Classification // Appl. Sci.
2024. Vol. 14. № 10511.

9. Aydoğan B., Aytekin T. An in-depth analysis of KernelSHAP and SamplingSHAP:
assessing robustness, error, and efficiency: B. Aydoğan, T. Aytekin // Knowledge and Information
Systems. 2025. P. 1-35.

10. Hasan M.M. Understanding model predictions: a comparative analysis of SHAP and
LIME on various ML algorithms // Journal of Scientific and Technological Research. 2023. Vol. 5(1).
P. 17-26.

11. Salih A.M., Raisi‐Estabragh Z., Galazzo I.B., Radeva P., Petersen S.E., Lekadir K.,
Menegaz G. A perspective on explainable artificial intelligence methods: SHAP and LIME //
Advanced Intelligent Systems. 2025. Vol. 7(1). № 2400304.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 64

UDC 004.738.5:004.421.2

THE EVOLUTION OF WEB CRAWLING IN SEARCH ENGINES:
PERFORMANCE, SCHEDULING, AND URL PRIORITIZATION

Bogutskii A.

bachelor's degree, ITMO University (St. Petersburg, Russia)

ЭВОЛЮЦИЯ ВЕБ-КРАУЛИНГА В ПОИСКОВЫХ СИСТЕМАХ:
ПРОИЗВОДИТЕЛЬНОСТЬ, ПЛАНИРОВАНИЕ И ПРИОРИТЕЗАЦИЯ

URL

Богуцкий А.Д.
бакалавр, Национальный исследовательский университет ИТМО

(Санкт-Петербург, Россия)

Abstract
This article explores the evolution of web crawling systems used in modern search platforms.

It examines key stages in the development of crawler architectures, ranging from simple sequential
traversal to large-scale distributed systems. It analyzes various crawl scheduling methods, including
URL loading strategies, queuing mechanisms, content change prediction, and adherence to web
resource access constraints. Particular attention is given to URL prioritization as a critical factor
influencing index completeness, the timely inclusion of new pages, and the overall effectiveness of
search results. It also discusses machine learning–based approaches used to predict the importance of
web pages and to improve the efficiency of crawler resource allocation.

Keywords: web crawling, search engine, URL traversal, URL prioritization, crawl scheduling,

crawl strategies, resource allocation.

Аннотация
В данной статье исследуется эволюция систем веб-краулинга, применяемых в

современных поисковых платформах. Рассматриваются ключевые этапы развития архитектур
краулеров, начиная от простых последовательных алгоритмов обхода и заканчивая
масштабируемыми распределенными системами. Анализируются методы планирования
обхода, включая стратегии загрузки, очередности URL, прогнозирование изменений контента
и соблюдение ограничений, накладываемых веб-ресурсами. Особое внимание уделяется
приоритезации URL как фактору, влияющему на полноту индексации, своевременность
включения новых страниц и общую эффективность поисковой выдачи. Также
рассматриваются подходы на основе машинного обучения, используемые для предсказания
значимости страниц и повышения эффективности распределения ресурсов краулера.

Ключевые слова: веб-краулинг, поисковая система, обход URL, приоритезация URL,

планирование загрузки, стратегии обхода, распределение ресурсов.

Introduction
The creation of search engines is closely tied to approaches enabling the automated extraction

of information from the internet. Web crawlers constitute an important element within the approach
whose role is the retrieval, processing, and distribution of information to users. The constant growth
of web pages and the increased structural complexity of them constitute important problems,
emphasizing both the technological challenges as well as the research importance of web crawling.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 65

Current crawlers operate under a wide range of constraints. The overall adoption of anti-bot
protections and the emergence of partially restricted web segments compel crawlers to make more
informed decisions about which resources to access. They must determine the optimal frequency of
revisits and allocate computational resources efficiently.

Even though there have been big improvements in the field, there are still many dilemmas that
need to be dealt with. These hurdles may consist of making page value prediction more accurate,
taking into account how web content changes over time, or even adjusting to how users behave. Also,
the strategies used during crawling have a direct effect on how information is stored in the search
index, which in turn affects how users can find certain topics and sources. The objective of this article
is to provide an examination of the evolution of web crawling systems, with a particular focus on
crawl scheduling and URL prioritization mechanisms.

Main part. The evolution of web crawling systems in search platforms
Contemporary search engines are seriously dependent on the quality and efficiency of their web

crawling systems. These are automated components responsible for discovering, retrieving, and
updating information from publicly accessible online sources. Web crawling refers to the systematic
traversal of the internet to collect content for subsequent indexing. The architecture and performance
of the tool directly affect the breadth of web coverage, freshness of crawled content and the relevance
of search results. This dependency is rooted in the constantly expanding scale of the internet, since it
continues to grow both in terms of the absolute number of websites and the relative complexity of
their structure (fig. 1).

Figure 1. Estimated number of websites worldwide, millions [1]

At the beginning of the internet, web crawlers were simple programs that explored the web
using basic graph search methods like depth-first and breadth-first search, with local state on a single
machine [2]. As the internet grew and the number of websites increased, it became impossible to
crawl all pages, so crawlers had to choose which URLs to crawl and process. They used host statistics
and link statistics to achieve that.

Eventually, one crawler could not handle the task alone, even when crawling the best-ranked
URLs. Crawlers were sharded to process non-overlapping subsets of the internet. This not only helped
to store and process many more URLs but also made the process parallel. Each crawler cycle worked
like this: process outgoing links from previously crawled sites, send links to the right shards, pick the
best URLs to download, then download them. Sharding by host made counting host statistics cheaper.
Later, very large websites appeared that were too big for one host. This led to a new stage where
multiple shards handled one host, making host statistics harder to calculate.

Over time, different types of crawlers were made – sharded-by-host batch crawlers with a task
scheduler like cron, real-time distributed systems with state storage on the same machine, and batch
crawlers using MapReduce for data preparation, processing, and aggregation. But the best solution
was using sharded event queues.

Modern web crawling systems are built on distributed, multi-component frameworks like
message queues and NoSQL storage. They are capable of handling billions of URLs and terabytes of
data daily. One major architectural advancement has been the adoption of asynchronous request
handling, which significantly reduces delays caused by network operations. With asynchronous I/O,

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 66

crawlers can maintain tens of thousands of concurrent connections, optimizing system resource
utilization [3]. Additionally, modern web crawling pipelines incorporate multi-layered processing.
These architectural improvements also extend to scheduling mechanisms: a widely adopted design
pattern is the use of hierarchical URL queues, which enables scalable and modular control over crawl
execution.

An equally major component in the effectiveness of latest web crawling lies in the integration
between the crawling subsystem and other elements of the search engine infrastructure. Data derived
from user queries, click behavior or interaction patterns can inform and refine crawling strategies.
This approach elevates the priority of URLs that are likely to hold greater value for users.

Web crawling faces a number of problems driven by both technical and structural changes in
the web ecosystem. One of the most pressing issues is scale. Millions of new pages are added daily,
but not all warrant inclusion in the index. This necessitates increasingly accurate estimation of content
utility even before fetching. The increasing use of dynamically generated content, which makes pages
fully accessible only after running JavaScript or interacting with client-side elements, adds to the
complexity. Modern crawlers are capable of executing JavaScript on well-prepared pages, which
allows them to retrieve accurate content. However, this is a resource-intensive operation and is
therefore applied selectively to URLs where JavaScript rendering is essential.

In summary, the progression of web crawling systems represents advancements in architecture
and data processing. It also means an ongoing adaptation to the changing digital environment. An
effective crawler must be scalable, intelligent, and capable of adapting in defiance of high content
volatility.

Crawl scheduling: load strategies and resource management
Once a distributed and scalable web crawling system is implemented, the process is faced with

the growing but no less critical challenge of effective crawl scheduling. Since the amount of
available web content can easily overwhelm even the most powerful of systems, it becomes necessary
to create careful strategies regarding which webpages are worthy of visiting, what time repeated
access should be made, and what efficient use of available infrastructure resources should be
achieved. Instead of having a rigid visitation schedule, modern crawl scheduling follows ranking
algorithms. For each URL, the system will first determine whether it meets predetermined inclusion
criteria. If so, there is a relevance score determined according to various metadata like freshness,
update frequency, and structure position. All these rankings guide the selection process, allowing the
system to give preference to high-value content while still maintaining control over the resource
consumption.

In practice, hierarchical URL queueing is the most commonly used strategy in modern web
crawlers. Under this approach, scheduling is managed through separate queues – typically organized
by domain, priority, or network segment – which enable flexible distribution of crawling tasks.
Importantly, metadata such as the timestamp of the last visit, estimated update frequency, structural
depth, and other attributes are not passed through queues along with URLs [4]. Instead, each URL is
associated with a persistent record stored separately, allowing the crawler to maintain historical
context and make informed decisions during subsequent scheduling iterations. Queues can be
organized by domain, priority level, or network segment, enabling flexible allocation and
redistribution of resources. Host-based partitioning of queues proves especially valuable in large
systems because it increases cache locality, reduces database connections and calls between services,
and allows for effective load balancing between machines. This architecture became the norm when
sites grew beyond the capacity of single-node crawlers to deal with them, and it became necessary to
assign certain queues or resources to high volume “host-monoliths” that generate a heavy amount of
URLs.

The scheduling process in web crawlers involves more than just deciding on the next URL to
crawl. It is more of a multifaceted problem that combines algorithmic techniques, infrastructural
constraints, signals of user intent, and other considerations involved in accessing web content. This
includes not only selecting which URLs to fetch next, but also deciding which outgoing links
extracted from previously downloaded pages should be followed and incorporated into the crawl

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 67

frontier. Skillful scheduling secures that resources are fully utilized and it also helps to build a more
accurate and complete portrayal of the web in the index used by browsers.

Link normalization plays a pivotal role in this process, removing duplicates and syntactic
variations (e.g., query parameters like ?utm_source=) to prevent redundant fetching of the same
resource under different addresses. In practice, seemingly insignificant query parameters can generate
excessively long URLs – particularly on marketplaces and trading platforms, where multiple tracking
or filtering parameters are often appended without affecting the actual content. Normalization helps
eliminate such inflated variants, ensuring that crawlers do not repeatedly fetch semantically identical
pages. Complementary to this, content-level deduplication mechanisms are employed to avoid
indexing identical or near-identical pages [5].

Modern crawlers increasingly rely on predictive models to anticipate content changes. The
goal is to determine the optimal moment for re-crawling a page. Visiting too frequently results in
unnecessary resource expenditure, whereas infrequent revisits may lead to stale entries in the search
index. Probabilistic models are constructed using historical change data, resource type, site structure,
and external signals such as user activity or timestamp patterns.

An essential aspect of crawl scheduling involves strict adherence to externally imposed
constraints. These limits can whether be defined by website administrators or arising from technical
considerations. The standard robots.txt file specifies which URLs are permitted or not allowed for
crawling. If a website is crawled too intensively, it may block the crawler’s IP address or deny further
access to its content. To prevent this, modern crawlers typically implement internal default rate limits
for each site, which can be dynamically adjusted based on the site's responsiveness or trust level.

At the same time, the crawl-delay directive sets a minimum interval between successive
requests to the same server. Although it is not officially specified in RFC 9309, this directive is
nevertheless supported by many crawlers as a de facto standard.

Another important factor building crawl strategy is the presence of active defense mechanisms
designed to reduce automated traffic. Crawlers that fail to comply with expected behavioral norms
may be flagged as suspicious and subjected to blocking or CAPTCHA tests. In recent past, quite
sophisticated traffic filtering systems have developed. One notable example is Cloudflare’s Block AI
Bots feature, a single-click solution marketed to non-technical users. While its ease of use is evident,
the feature operates as a “black box”, offering little transparency into its internal logic. As a result,
even legitimate crawling agents may be denied access based on their technological signatures or user-
agent identifiers (fig. 2).

Figure 2. Diagram of decision outcomes for automated agents under the Cloudflare AI blocking

mechanism [6]
These factors illustrate that crawl scheduling is no longer a question of simply optimizing

internal resource usage – it also requires external sensitivity and responsiveness. Effective schedulers
now must factor in infrastructural scaleability, dynamic content patterns, compliance with evolving
access policies, and the presence of automatic defense mechanisms. As the web becomes even more

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 68

intricate, large-scale crawling sustainably will depend not only on better algorithms, but on the ability
to navigate an increasingly regulated and adversarial terrain.

URL prioritization: impact on coverage and indexing efficiency
Since web crawling infrastructures suffer from inherent resource restrictions, it is necessary to

develop a method for sequencing pages to crawl and prioritizing URLs. Unlike crawl scheduling,
whose decision making is based basically on technical restrictions and queueing policies, the URL
prioritization only concerns examining the utility and the relevance of web pages.

One of the foundational approaches to prioritization is based on hyperlink popularity. URLs
that are linked to by a large number of external or authoritative sources are typically considered more
significant. Such metrics are used in algorithms like PageRank and inform not only search result
ranking but also the order in which URLs are crawled. The frequency of content updates is another
important factor in URL prioritisation. Pages that change often, such as the front pages of news sites,
update feeds, or product catalogues, should be crawled more often. To accomplish this, crawlers
maintain search logs, logs of content changes, and aggregated host data, which are then used to predict
the future update behavior of each resource.

In addition to both temporal and structural indicators, prioritization may also consider the
topical relevance of a page’s content. This has led to the spreading adoption of focused crawlers.
These are specialized systems designed to gather information within a predefined domain of interest.
A core component of focused crawling is the topic classifier, which evaluates the content of
downloaded pages in real time to determine whether to continue following outbound links (fig. 3).

Figure 3. General flow of focused web crawler [7]

A website’s navigational structure often reflects the relative importance of its pages within the
domain, and this can serve as a basis for internal URL ranking. All of the aforementioned signals can
be aggregated into a composite priority score, which guides decisions on the order of initial
downloads as well as subsequent recrawling. The effectiveness of URL prioritization is not measured
directly. Rather, it manifests through secondary metrics that characterize the overall state and
behavior of the search system. These metrics can include index freshness or indexing latency (table
1).

Table 1
URL prioritization efficiency metrics [8, 9]

Metric Description
Index freshness The degree to which indexed data reflects the current state of websites.

Effective prioritization helps timely update of frequently changing and
important pages.

Coverage
completeness

The proportion of valuable content discovered within the limits of crawl
capacity. Poor prioritization can lead to skipping useful pages in favor of
less important ones.

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 69

Metric Description
Indexing latency The delay between a page appearing on the web and being available in

search. Smart prioritization reduces this delay for high-priority content.
Search result
effectiveness

Although not directly dependent on crawling, search quality is strongly
influenced by which pages are indexed and how often. Skipped or
outdated pages reduce relevance and user satisfaction.

To evaluate prioritization effectiveness, practitioners rely on experimental measurements, A/B
testing of competing strategies, and retrospective analysis of crawl logs and user interaction data.

Given the complexity of the modern web and the limitations of manually tuning prioritization
rules, machine learning (ML) is increasingly integrated into crawling systems, as previously noted.
These models are trained on historical crawl data, search query logs, and user behavior signals to
predict the likely importance of web pages. Feature sets for such models may include the structure
and length of the URL, semantic elements in the HTML (e.g., headers, meta tags), historical change
patterns, and similar attributes [10].

The models estimate the probability that a URL is valuable and assign priority scores
accordingly, which are then integrated into the global crawl queue. In some advanced
implementations, reinforcement learning techniques can be applied, as they allow the system to adjust
priorities dynamically based on downstream outcomes.

The integration of artificial intelligence can substantially increase the adaptability of crawling
systems and enable them to better accommodate the heterogeneity of the web. Through incorporation
of ML, crawlers can generalize beyond hand-crafted rules and adjust to emerging patterns in content
and linking behavior.

Conclusion
The evolution of web crawling, as a core technical component of search engine operation, is

representative of the overall effort to increase scalability and responsiveness in the rapidly growing
environment of the internet. Older systems, based on linear navigation techniques, have been replaced
by modern distributed and asynchronous systems, along with significant changes in the structure of
web crawlers. These developments have made it possible to achieve dramatic improvements in both
the breadth and pace of web crawler activities. However, with these advances in architecture, the
significance of algorithmic decision-making, particularly crawl scheduling and resource allocation,
has dramatically increased.

At the heart of modern-day web crawling techniques lies prioritization of URLs, a function that
identifies the importance, value, and timeliness of web page indexing. Predictive models and various
algorithms are increasingly being used to enhance indexing quality, incorporating behavioral signals
and structural signals. At the same time, the increasing use of server-side protection mechanisms in
the form of anti-bot systems and headless browser restrictions has added another layer of intricacy.
Crawl planning and prioritization have thus evolved into tasks that are not only computationally
demanding but also legally nuanced.

References
1. How Many Websites Are There in the World? / Siteefy // URL:

https://siteefy.com/how-many-websites-are-there/ (date of application: 10.08.2025).
2. Kuznetsov I.A., Bobunov A.Yu., Bushuev S.A., Smirnov A.P., Pshichenko D.V.

Integration of Big Data into Recommendation Systems: Content Personalization Technologies //
Competitiveness in the Global World: Economics, Science, Technology. 2024. № 9. P. 56-61.

3. Garifullin R. Application of RxJS and NgRx for reactive programming in industrial
web development: methods for managing asynchronous data streams and application state //
International Journal of Professional Science. 2024. № 12-2. P. 42-47.

4. Mehyadin A.E., Abdulrahman L.M., Ahmed S.H., Qashi R. Distributed fundamentals
based conducting the web crawling approaches and types (focused, incremental, distributed, parallel,
hidden web, form focused and breadth first) crawlers // Journal of Smart Internet of Things. 2023.
Vol. 2022(1). P. 10-32.

https://siteefy.com/how-many-websites-are-there/

The scientific publishing house «Professional Bulletin»

№ 3/2025 Journal «Professional Bulletin. Information Technology and Security» 70

5. Viji D., Revathy S. Hash-Indexing Block-Based Deduplication Algorithm for
Reducing Storage in the Cloud // Comput. Syst. Sci. Eng. 2023. Vol. 46(1). P. 27-42.

6. Liu E., Luo E., Shan S., Voelker G.M., Zhao B.Y., Savage S. Somesite I Used to
Crawl: Awareness, Agency and Efficacy in Protecting Content Creators from AI Crawlers. In
Proceedings of the 2025 ACM Internet Measurement Conference (IMC ’25). Madison, WI, USA.
ACM, New York, NY, USA, 22 p.

7. Neelakandan S., Arun A., Bhukya R.R., Hardas B.M., Kumar T.C., Ashok M. An
automated word embedding with parameter tuned model for web crawling // Intelligent Automation
& Soft Computing. 2022. Vol. 32(3). P. 1617-32.

8. Sethi S. An optimized crawling technique for maintaining fresh repositories //
Multimedia Tools and Applications. 2021. Vol. 80(7). P. 11049-77.

9. Rafsanjani A.S., Kamaruddin N.B., Behjati M., Aslam S., Sarfaraz A., Amphawan A.
Enhancing malicious URL detection: A novel framework leveraging priority coefficient and feature
evaluation // IEEE Access. 2024. Vol. 12. P. 85001-26.

10. Kunekar P., Nimbolkar A., Patil A., Lakde V., Wadile P., Rathod K. Product Review
Sentiment Analysis using Web Crawler and Machine Learning. // Grenze International Journal of
Engineering & Technology (GIJET). 2024. Vol.10(2). № 5479.

